"Modular quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* introduced by Fadeev
+
* introduced by Faddeev
 
* called the modular quantum dilogarithm or regularized quantum dilogarithm
 
* called the modular quantum dilogarithm or regularized quantum dilogarithm
 
* applications
 
* applications
 
** [[S-matrix of the quantum sine-Gordon model]]
 
** [[S-matrix of the quantum sine-Gordon model]]
 +
* definition : $b\in \mathbb{C}$ with non-zero real part and $z\in \mathbb{C}$
 +
$$
 +
\Phi_{b}(z)=\exp\left(-\frac{1}{4}\int \frac{e^{-2zx\sqrt{-1}}}{\sinh(xb) \sinh(x/b)}\, \frac{dx}{x}\right)
 +
$$
 +
 +
==properties==
 +
===symmetries===
 +
 +
===recurrence relation===
 +
 +
 +
===unitarity===
 +
 +
 +
===relation with other quantum dilogarithms===
  
  

2013년 4월 7일 (일) 12:30 판

introduction

  • introduced by Faddeev
  • called the modular quantum dilogarithm or regularized quantum dilogarithm
  • applications
  • definition : $b\in \mathbb{C}$ with non-zero real part and $z\in \mathbb{C}$

$$ \Phi_{b}(z)=\exp\left(-\frac{1}{4}\int \frac{e^{-2zx\sqrt{-1}}}{\sinh(xb) \sinh(x/b)}\, \frac{dx}{x}\right) $$

properties

symmetries

recurrence relation

unitarity

relation with other quantum dilogarithms

articles

  • Johnson, P. R. 1996. “Exact Quantum S-matrices for Solitons in Simply-laced Affine Toda Field Theories.” arXiv:hep-th/9611117 (November 15). doi:10.1016/S0550-3213(97)00239-3. http://arxiv.org/abs/hep-th/9611117.
  • Faddeev, L. 1995. “Discrete Heisenberg-Weyl Group and Modular Group.” arXiv:hep-th/9504111 (April 21). doi:10.1007/BF01872779. http://arxiv.org/abs/hep-th/9504111.
  • Faddeev, L. D. 1994. “Current-Like Variables in Massive and Massless Integrable Models.” arXiv:hep-th/9408041 (August 7). http://arxiv.org/abs/hep-th/9408041.