"Mutations in cluster algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* A '''seed''' for A is an initial cluster <math>x=\{x_1,\cdots,x_n\}</math> and an <math>n\times n</math> skew-symmetrizable matrix $B$. (think of skew-symmetric)
+
* A '''seed''' for A is an initial cluster <math>x=\{x_1,\cdots,x_n\}</math> and an <math>n\times n</math> skew-symmetrizable matrix <math>B</math>. (think of skew-symmetric)
* Columns of $B$ encode exchange relations.
+
* Columns of <math>B</math> encode exchange relations.
* From seed, we can mutate in each of n directions obtaining $n$ more seeds
+
* From seed, we can mutate in each of n directions obtaining <math>n</math> more seeds
* For mutation in the $k$-th direction, we obtain the new seed
+
* For mutation in the <math>k</math>-th direction, we obtain the new seed
 
:<math>\{\{x_1,\cdots,x_{k-1},x_{k+1},\cdots,x_n\}\cup\{x_k'\}, \mu_k(B)\}</math>
 
:<math>\{\{x_1,\cdots,x_{k-1},x_{k+1},\cdots,x_n\}\cup\{x_k'\}, \mu_k(B)\}</math>
  
17번째 줄: 17번째 줄:
 
==matrix mutation==
 
==matrix mutation==
 
* Here <math>\mu_k(B)=(b_{ij}')</math> is a new matrix defined as
 
* Here <math>\mu_k(B)=(b_{ij}')</math> is a new matrix defined as
$$
+
:<math>
 
b_{ij}'=
 
b_{ij}'=
 
\begin{cases}  
 
\begin{cases}  
-b_{ij}, & \text{if $k=i$ or $j$}\\
+
-b_{ij}, & \text{if </math>k=i<math> or </math>j<math>}\\
b_{ij},  & \text{if $b_{ik}b_{kj}\leq 0$}\\
+
b_{ij},  & \text{if </math>b_{ik}b_{kj}\leq 0<math>}\\
b_{ij}+b_{ik}b_{kj}, & \text{if $b_{ik},b_{kj}>0$}\\
+
b_{ij}+b_{ik}b_{kj}, & \text{if </math>b_{ik},b_{kj}>0<math>}\\
b_{ij}-b_{ik}b_{kj}, & \text{if $b_{ik},b_{kj}<0$}\\
+
b_{ij}-b_{ik}b_{kj}, & \text{if </math>b_{ik},b_{kj}<0<math>}\\
 
\end{cases}
 
\end{cases}
$$
+
</math>
 
or simply,
 
or simply,
$$
+
:<math>
 
b_{ij}'=
 
b_{ij}'=
 
\begin{cases}  
 
\begin{cases}  
-b_{ij}, & \text{if $k=i$ or $j$}\\
+
-b_{ij}, & \text{if </math>k=i<math> or </math>j<math>}\\
 
b_{ij}+\operatorname{sgn}(b_{ik})[b_{ik}b_{kj}]_{+}, & \text{otherwise}\\
 
b_{ij}+\operatorname{sgn}(b_{ik})[b_{ik}b_{kj}]_{+}, & \text{otherwise}\\
 
\end{cases}
 
\end{cases}
$$
+
</math>
where $[x]_{+}=\max(x,0)$
+
where <math>[x]_{+}=\max(x,0)</math>
 
* Note that <math>\mu_k(B)</math> is skew-symmetrizable and <math>\mu_k^2=I</math>.
 
* Note that <math>\mu_k(B)</math> is skew-symmetrizable and <math>\mu_k^2=I</math>.
  

2020년 11월 13일 (금) 18:27 기준 최신판

introduction

  • A seed for A is an initial cluster \(x=\{x_1,\cdots,x_n\}\) and an \(n\times n\) skew-symmetrizable matrix \(B\). (think of skew-symmetric)
  • Columns of \(B\) encode exchange relations.
  • From seed, we can mutate in each of n directions obtaining \(n\) more seeds
  • For mutation in the \(k\)-th direction, we obtain the new seed

\[\{\{x_1,\cdots,x_{k-1},x_{k+1},\cdots,x_n\}\cup\{x_k'\}, \mu_k(B)\}\]


exchange relation

  • For \(k\in \{1,2,\cdots, n\}\),

\[x_kx_k' = \prod_{b_{ik}>0} x_i^{b_{ik}}+\prod_{b_{ik}<0} x_i^{|b_{ik}|}\]

  • This defines a new cluster variable \(x_k'\)
  • This is the mutation into the k-th direction
  • (Fig3)


matrix mutation

  • Here \(\mu_k(B)=(b_{ij}')\) is a new matrix defined as

\[ b_{ij}'= \begin{cases} -b_{ij}, & \text{if \]k=i\( or \)j\(}\\ b_{ij}, & \text{if \)b_{ik}b_{kj}\leq 0\(}\\ b_{ij}+b_{ik}b_{kj}, & \text{if \)b_{ik},b_{kj}>0\(}\\ b_{ij}-b_{ik}b_{kj}, & \text{if \)b_{ik},b_{kj}<0\(}\\ \end{cases} \) or simply, \[ b_{ij}'= \begin{cases} -b_{ij}, & \text{if \]k=i\( or \)j\(}\\ b_{ij}+\operatorname{sgn}(b_{ik})[b_{ik}b_{kj}]_{+}, & \text{otherwise}\\ \end{cases} \) where \([x]_{+}=\max(x,0)\)

  • Note that \(\mu_k(B)\) is skew-symmetrizable and \(\mu_k^2=I\).

related items


computational resource