"Vertex operator algebra (VOA)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
| 1번째 줄: | 1번째 줄: | ||
| + | <h5>introduction</h5> | ||
| + | * <math>V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}</math> | ||
| + | * <math>\dim V_{(n)} <\infty</math> for <math>n\in \mathbb{Z}</math> | ||
| + | * <math>\dim V_{(n)}=0</math> for <math>n<<0</math> | ||
| + | * vertex operator<br><math>V\to (\operatorname{End})[[x,x^{-1}]]</math><br><math>v\mapsto Y(v,x)=\sum</math><br><math>Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}</math><br> | ||
| + | * <math>(V,Y,\mathbf{1},D)</math> with the following axioms | ||
| + | * locality<br><math>(z_1-z_2)^N[Y(v_1,z_1),Y(v_2,z_2)]=0</math> for some positive integer N<br> | ||
| + | * creativity<br><math>Y(v,z).\mathbf{1}=v+\cdots</math><br> | ||
| + | * derivation with<br><math>D.\mathbf{1}=0</math><br> | ||
| + | * translation covariance <br><math>[D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)</math><br> | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 2em; margin: 0px;">Virasoro VOA</h5> | ||
| + | |||
| + | * <math>V=V(c,0)</math> : a highest weight module for [[Virasoro algebra]]<br> | ||
| + | ** <math>\mathbf{1}\in V</math> is the highest weight vector (vacuum)<br> | ||
| + | ** central charge <math>c\in \mathbb{C}</math><br> | ||
| + | ** <math>L_{-n}\mathbf{1}=0</math> for <math>n\geq 1</math><br> | ||
| + | ** <math>V(c,0)=M(c,0)/\langle L_{-1}\mathbf{1} \rangle</math><br> | ||
| + | * conformal vector<br><math>\omega=L_{-2}.\mathbf{1}</math><br><math>Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}</math><br> | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>history</h5> | ||
| + | |||
| + | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>related items</h5> | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> | ||
| + | |||
| + | * http://en.wikipedia.org/wiki/ | ||
| + | * http://www.scholarpedia.org/ | ||
| + | * http://eom.springer.de | ||
| + | * http://www.proofwiki.org/wiki/ | ||
| + | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>books</h5> | ||
| + | |||
| + | |||
| + | |||
| + | * [[2011년 books and articles]] | ||
| + | * http://library.nu/search?q= | ||
| + | * http://library.nu/search?q= | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>expositions</h5> | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | ||
| + | |||
| + | |||
| + | |||
| + | * http://www.ams.org/mathscinet | ||
| + | * http://www.zentralblatt-math.org/zmath/en/ | ||
| + | * http://arxiv.org/ | ||
| + | * http://www.pdf-search.org/ | ||
| + | * http://pythagoras0.springnote.com/ | ||
| + | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] | ||
| + | * http://dx.doi.org/ | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>question and answers(Math Overflow)</h5> | ||
| + | |||
| + | * http://mathoverflow.net/search?q= | ||
| + | * http://math.stackexchange.com/search?q= | ||
| + | * http://physics.stackexchange.com/search?q= | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>blogs</h5> | ||
| + | |||
| + | * 구글 블로그 검색<br> | ||
| + | ** http://blogsearch.google.com/blogsearch?q=<br> | ||
| + | ** http://blogsearch.google.com/blogsearch?q= | ||
| + | * http://ncatlab.org/nlab/show/HomePage | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>experts on the field</h5> | ||
| + | |||
| + | * http://arxiv.org/ | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>links</h5> | ||
| + | |||
| + | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
| + | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
2012년 7월 17일 (화) 13:07 판
introduction
- \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\)
- \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
- \(\dim V_{(n)}=0\) for \(n<<0\)
- vertex operator
\(V\to (\operatorname{End})[[x,x^{-1}]]\)
\(v\mapsto Y(v,x)=\sum\)
\(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) - \((V,Y,\mathbf{1},D)\) with the following axioms
- locality
\((z_1-z_2)^N[Y(v_1,z_1),Y(v_2,z_2)]=0\) for some positive integer N - creativity
\(Y(v,z).\mathbf{1}=v+\cdots\) - derivation with
\(D.\mathbf{1}=0\) - translation covariance
\([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\)
Virasoro VOA
- \(V=V(c,0)\) : a highest weight module for Virasoro algebra
- \(\mathbf{1}\in V\) is the highest weight vector (vacuum)
- central charge \(c\in \mathbb{C}\)
- \(L_{-n}\mathbf{1}=0\) for \(n\geq 1\)
- \(V(c,0)=M(c,0)/\langle L_{-1}\mathbf{1} \rangle\)
- \(\mathbf{1}\in V\) is the highest weight vector (vacuum)
- conformal vector
\(\omega=L_{-2}.\mathbf{1}\)
\(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field