"Vertex operator algebra (VOA)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
20번째 줄: 20번째 줄:
 
* <math>L(0)v=nv</math> for <math>n\in\mathbb{Z}</math> and <math>v\in V_{(n)}</math>
 
* <math>L(0)v=nv</math> for <math>n\in\mathbb{Z}</math> and <math>v\in V_{(n)}</math>
 
*  translation covariance  <br><math>[D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)</math><br>
 
*  translation covariance  <br><math>[D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)</math><br>
*  Jacobi identity<br>  <br>
+
*  Jacobi identity<br><math> $z_0^{-1}\delta(\frac  {z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac  {z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac  {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)$</math><br>
  
 
 
 
 
26번째 줄: 26번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">Virasoro VOA</h5>
+
<h5>remark on Jacobi identity</h5>
  
* <math>V=V(c,0)</math> : a highest weight module for [[Virasoro algebra]]<br>
+
 
** <math>\mathbf{1}\in V</math> is the highest weight vector (vacuum)<br>
 
**  central charge <math>c\in \mathbb{C}</math><br>
 
** <math>L_{-n}\mathbf{1}=0</math> for <math>n\geq 1</math><br>
 
** <math>V(c,0)=M(c,0)/\langle L_{-1}\mathbf{1} \rangle</math><br>
 
*  conformal vector<br><math>\omega=L_{-2}.\mathbf{1}</math><br><math>Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}</math><br>
 
  
 
 
 
 

2012년 7월 17일 (화) 13:30 판

definition
  • vertex operator algbera is a quadruple \((V,Y,\mathbf{1},\omega)\) with the following axioms
  • \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\) vector space
  • \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
  • \(\dim V_{(n)}=0\) for \(n<<0\)
  • vertex operator
    \(V\to (\operatorname{End})[[x,x^{-1}]]\)
    \(v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}\)
  • two distinguished vectors \(\mathbf{1}\in V_{(0)}\) and  \(\omega\in V_{(2)}\)

 

 

axioms
  •  
    \(u_{n}v=0\) for \(n>>0\)
  • \(Y(\mathbf{1},z)=\operatorname{id}_{V}\)
  • (creation property)
    \(Y(v,z).\mathbf{1}=v+\cdots\)
  • conformal vector
    \(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) satisfies
    \([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\)
  • \(L(0)v=nv\) for \(n\in\mathbb{Z}\) and \(v\in V_{(n)}\)
  • translation covariance  
    \([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\)
  • Jacobi identity
    \( $z_0^{-1}\delta(\frac {z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac {z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)$\)

 

 

remark on Jacobi identity

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links