"Vertex operator algebra (VOA)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
*  vertex operator<br><math>V\to (\operatorname{End})[[x,x^{-1}]]</math><br><math>v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}</math><br>
 
*  vertex operator<br><math>V\to (\operatorname{End})[[x,x^{-1}]]</math><br><math>v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}</math><br>
 
* two distinguished vectors <math>\mathbf{1}\in V_{(0)}</math> and  <math>\omega\in V_{(2)}</math>
 
* two distinguished vectors <math>\mathbf{1}\in V_{(0)}</math> and  <math>\omega\in V_{(2)}</math>
 +
 +
 
 +
 +
 
 +
 +
<h5>vertex algebra vs VOS</h5>
  
 
 
 
 
28번째 줄: 34번째 줄:
 
<h5>remark on Jacobi identity</h5>
 
<h5>remark on Jacobi identity</h5>
  
 
+
*  Jacobi identity for Lie algebra says<br><math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math><br>
  
 
 
 
 

2012년 7월 17일 (화) 13:38 판

definition
  • vertex operator algbera is a quadruple \((V,Y,\mathbf{1},\omega)\) with the following axioms
  • \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\) vector space
  • \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
  • \(\dim V_{(n)}=0\) for \(n<<0\)
  • vertex operator
    \(V\to (\operatorname{End})[[x,x^{-1}]]\)
    \(v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}\)
  • two distinguished vectors \(\mathbf{1}\in V_{(0)}\) and  \(\omega\in V_{(2)}\)

 

 

vertex algebra vs VOS

 

 

axioms
  •  
    \(u_{n}v=0\) for \(n>>0\)
  • \(Y(\mathbf{1},z)=\operatorname{id}_{V}\)
  • (creation property)
    \(Y(v,z).\mathbf{1}=v+\cdots\)
  • conformal vector
    \(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) satisfies
    \([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\)
  • \(L(0)v=nv\) for \(n\in\mathbb{Z}\) and \(v\in V_{(n)}\)
  • translation covariance  
    \([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\)
  • Jacobi identity
    \( $z_0^{-1}\delta(\frac {z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac {z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)$\)

 

 

remark on Jacobi identity
  • Jacobi identity for Lie algebra says
    \((\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)\)

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

 

blogs

 

 

experts on the field

 

 

links