"Vertex operator algebra (VOA)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
| 7번째 줄: | 7번째 줄: | ||
* vertex operator<br><math>V\to (\operatorname{End})[[x,x^{-1}]]</math><br><math>v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}</math><br> | * vertex operator<br><math>V\to (\operatorname{End})[[x,x^{-1}]]</math><br><math>v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}</math><br> | ||
* two distinguished vectors <math>\mathbf{1}\in V_{(0)}</math> and <math>\omega\in V_{(2)}</math> | * two distinguished vectors <math>\mathbf{1}\in V_{(0)}</math> and <math>\omega\in V_{(2)}</math> | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <h5>vertex algebra vs VOS</h5> | ||
| 28번째 줄: | 34번째 줄: | ||
<h5>remark on Jacobi identity</h5> | <h5>remark on Jacobi identity</h5> | ||
| − | + | * Jacobi identity for Lie algebra says<br><math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math><br> | |
2012년 7월 17일 (화) 13:38 판
definition
- vertex operator algbera is a quadruple \((V,Y,\mathbf{1},\omega)\) with the following axioms
- \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\) vector space
- \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
- \(\dim V_{(n)}=0\) for \(n<<0\)
- vertex operator
\(V\to (\operatorname{End})[[x,x^{-1}]]\)
\(v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}\) - two distinguished vectors \(\mathbf{1}\in V_{(0)}\) and \(\omega\in V_{(2)}\)
vertex algebra vs VOS
axioms
-
\(u_{n}v=0\) for \(n>>0\) - \(Y(\mathbf{1},z)=\operatorname{id}_{V}\)
- (creation property)
\(Y(v,z).\mathbf{1}=v+\cdots\) - conformal vector
\(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) satisfies
\([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\) - \(L(0)v=nv\) for \(n\in\mathbb{Z}\) and \(v\in V_{(n)}\)
- translation covariance
\([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\) - Jacobi identity
\( $z_0^{-1}\delta(\frac {z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac {z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)$\)
remark on Jacobi identity
- Jacobi identity for Lie algebra says
\((\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)\)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field