"Vertex operator algebra (VOA)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==definition</h5> | |
* vertex operator algbera is a quadruple <math>(V,Y,\mathbf{1},\omega)</math> with the following axioms | * vertex operator algbera is a quadruple <math>(V,Y,\mathbf{1},\omega)</math> with the following axioms | ||
| 12번째 줄: | 12번째 줄: | ||
| − | + | ==vertex algebra vs VOA</h5> | |
* grading on V | * grading on V | ||
| 20번째 줄: | 20번째 줄: | ||
| − | + | ==axioms</h5> | |
* <br><math>u_{n}v=0</math> for <math>n>>0</math><br> | * <br><math>u_{n}v=0</math> for <math>n>>0</math><br> | ||
| 34번째 줄: | 34번째 줄: | ||
| − | + | ==remark on Jacobi identity</h5> | |
* Jacobi identity for Lie algebra says<br><math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math><br> | * Jacobi identity for Lie algebra says<br><math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math><br> | ||
| 42번째 줄: | 42번째 줄: | ||
| − | + | ==history</h5> | |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
| 50번째 줄: | 50번째 줄: | ||
| − | + | ==related items</h5> | |
| 68번째 줄: | 68번째 줄: | ||
| − | + | ==books</h5> | |
| 80번째 줄: | 80번째 줄: | ||
| − | + | ==expositions</h5> | |
| 102번째 줄: | 102번째 줄: | ||
| − | + | ==question and answers(Math Overflow)</h5> | |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
| 114번째 줄: | 114번째 줄: | ||
| − | + | ==blogs</h5> | |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
| 125번째 줄: | 125번째 줄: | ||
| − | + | ==experts on the field</h5> | |
* http://arxiv.org/ | * http://arxiv.org/ | ||
| 133번째 줄: | 133번째 줄: | ||
| − | + | ==links</h5> | |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
2012년 10월 28일 (일) 15:07 판
==definition
- vertex operator algbera is a quadruple \((V,Y,\mathbf{1},\omega)\) with the following axioms
- \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\) vector space
- \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
- \(\dim V_{(n)}=0\) for \(n<<0\)
- vertex operator
\(V\to (\operatorname{End})[[x,x^{-1}]]\)
\(v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}\) - two distinguished vectors \(\mathbf{1}\in V_{(0)}\) and \(\omega\in V_{(2)}\)
==vertex algebra vs VOA
- grading on V
==axioms
-
\(u_{n}v=0\) for \(n>>0\) - \(Y(\mathbf{1},z)=\operatorname{id}_{V}\)
- (creation property)
\(Y(v,z).\mathbf{1}=v+\cdots\) - conformal vector
\(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) satisfies
\([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\) - \(L(0)v=nv\) for \(n\in\mathbb{Z}\) and \(v\in V_{(n)}\)
- translation covariance
\([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\) - Jacobi identity
\( $z_0^{-1}\delta(\frac {z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac {z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)$\)
==remark on Jacobi identity
- Jacobi identity for Lie algebra says
\((\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)\)
==history
==related items
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
==books
==expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
==question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://math.stackexchange.com/search?q=
- http://physics.stackexchange.com/search?q=
==blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
==experts on the field
==links