"Vertex operator algebra (VOA)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>definition</h5>
+
==definition</h5>
  
 
* vertex operator algbera is a quadruple <math>(V,Y,\mathbf{1},\omega)</math> with the following axioms
 
* vertex operator algbera is a quadruple <math>(V,Y,\mathbf{1},\omega)</math> with the following axioms
12번째 줄: 12번째 줄:
 
 
 
 
  
<h5>vertex algebra vs VOA</h5>
+
==vertex algebra vs VOA</h5>
  
 
* grading on V
 
* grading on V
20번째 줄: 20번째 줄:
 
 
 
 
  
<h5>axioms</h5>
+
==axioms</h5>
  
 
*   <br><math>u_{n}v=0</math> for <math>n>>0</math><br>
 
*   <br><math>u_{n}v=0</math> for <math>n>>0</math><br>
34번째 줄: 34번째 줄:
 
 
 
 
  
<h5>remark on Jacobi identity</h5>
+
==remark on Jacobi identity</h5>
  
 
*  Jacobi identity for Lie algebra says<br><math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math><br>
 
*  Jacobi identity for Lie algebra says<br><math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math><br>
42번째 줄: 42번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
50번째 줄: 50번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
 
 
 
68번째 줄: 68번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
 
 
 
80번째 줄: 80번째 줄:
 
 
 
 
  
<h5>expositions</h5>
+
==expositions</h5>
  
 
 
 
 
102번째 줄: 102번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
114번째 줄: 114번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
125번째 줄: 125번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
133번째 줄: 133번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]

2012년 10월 28일 (일) 15:07 판

==definition

  • vertex operator algbera is a quadruple \((V,Y,\mathbf{1},\omega)\) with the following axioms
  • \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\) vector space
  • \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
  • \(\dim V_{(n)}=0\) for \(n<<0\)
  • vertex operator
    \(V\to (\operatorname{End})[[x,x^{-1}]]\)
    \(v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}\)
  • two distinguished vectors \(\mathbf{1}\in V_{(0)}\) and  \(\omega\in V_{(2)}\)

 

 

==vertex algebra vs VOA

  • grading on V

 

 

==axioms

  •  
    \(u_{n}v=0\) for \(n>>0\)
  • \(Y(\mathbf{1},z)=\operatorname{id}_{V}\)
  • (creation property)
    \(Y(v,z).\mathbf{1}=v+\cdots\)
  • conformal vector
    \(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) satisfies
    \([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\)
  • \(L(0)v=nv\) for \(n\in\mathbb{Z}\) and \(v\in V_{(n)}\)
  • translation covariance  
    \([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\)
  • Jacobi identity
    \( $z_0^{-1}\delta(\frac {z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac {z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)$\)

 

 

==remark on Jacobi identity

  • Jacobi identity for Lie algebra says
    \((\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)\)

 

 

==history

 

 

==related items

 

 

encyclopedia

 

 

==books

 

 

 

==expositions

 

 

articles

 

 

 

==question and answers(Math Overflow)

 

 

 

==blogs

 

 

==experts on the field

 

 

==links