"Vertex operator algebra (VOA)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(section 'articles' updated)
imported>Pythagoras0
1번째 줄: 1번째 줄:
==definition==
 
  
* vertex operator algbera is a quadruple <math>(V,Y,\mathbf{1},\omega)</math> with the following axioms
 
* <math>V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}</math> vector space
 
* <math>\dim V_{(n)} <\infty</math> for <math>n\in \mathbb{Z}</math>
 
* <math>\dim V_{(n)}=0</math> for <math>n<<0</math>
 
*  vertex operator<br><math>V\to (\operatorname{End})[[x,x^{-1}]]</math><br><math>v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}</math><br>
 
* two distinguished vectors <math>\mathbf{1}\in V_{(0)}</math> and  <math>\omega\in V_{(2)}</math>
 
 
 
 
 
 
 
 
==vertex algebra vs VOA==
 
 
* grading on V
 
 
 
 
 
 
 
 
==axioms==
 
 
*   <br><math>u_{n}v=0</math> for <math>n>>0</math><br>
 
* <math>Y(\mathbf{1},z)=\operatorname{id}_{V}</math>
 
*  (creation property)<br><math>Y(v,z).\mathbf{1}=v+\cdots</math><br>
 
*  conformal vector<br><math>Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}</math> satisfies<br><math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}</math><br>
 
* <math>L(0)v=nv</math> for <math>n\in\mathbb{Z}</math> and <math>v\in V_{(n)}</math>
 
*  translation covariance  <br><math>[D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)</math><br>
 
*  Jacobi identity
 
:<math>z_0^{-1}\delta(\frac{z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac{z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac  {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)</math>
 
 
 
 
 
 
 
==remark on Jacobi identity==
 
 
*  Jacobi identity for Lie algebra says<br><math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math><br>
 
 
 
 
 
 
 
 
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
==related items==
 
 
 
 
 
==expositions==
 
* Mason, [http://ws15.amsi.org.au/wp-content/uploads/sites/9/2015/05/Vanderbilt.pdf Vertex Operator Algebras]
 
* Mason, [http://ws15.amsi.org.au/wp-content/uploads/sites/9/2015/05/Heidelberg.pdf Vertex Operator Algebras, Modular Forms and Moonshine] 
 
 
 
 
==articles==
 
* Yi-Zhi Huang, Jinwei Yang, Associative algebras for (logarithmic) twisted modules for a vertex operator algebra, arXiv:1603.04367 [math.QA], March 14 2016, http://arxiv.org/abs/1603.04367
 
* Gilroy, Thomas, and Michael P. Tuite. “Genus Two Zhu Theory for Vertex Operator Algebras.” arXiv:1511.07664 [hep-Th], November 24, 2015. http://arxiv.org/abs/1511.07664.
 
* Ai, Chunrui, and Xingjun Lin. “On the Unitary Structures of Vertex Operator Superalgebras.” arXiv:1510.08609 [math], October 29, 2015. http://arxiv.org/abs/1510.08609.
 
* Ding, Lu, Wei Jiang, and Wei Zhang. “Zhu’s Algebra of a C1-Cofinite Vertex Algebra.” arXiv:1508.06351 [math], August 25, 2015. http://arxiv.org/abs/1508.06351.
 
* van Ekeren, Jethro, Sven Möller, and Nils R. Scheithauer. “Construction and Classification of Holomorphic Vertex Operator Algebras.” arXiv:1507.08142 [math], July 29, 2015. http://arxiv.org/abs/1507.08142.
 
 
 
[[분류:개인노트]]
 

2020년 11월 13일 (금) 19:39 판