"Theta functions in affine Kac-Moody algebras"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
16번째 줄: | 16번째 줄: | ||
\theta_{1,0}=1 + q (1/z + z) + q^4 (1/z^2 + z^2) + q^9 (1/z^3 + z^3)+\cdots | \theta_{1,0}=1 + q (1/z + z) + q^4 (1/z^2 + z^2) + q^9 (1/z^3 + z^3)+\cdots | ||
$$ | $$ | ||
+ | |||
+ | |||
+ | ==related items== | ||
+ | * [[Theta functions]] | ||
+ | |||
==computational resource== | ==computational resource== | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxbW9iUTgtaThCM2s/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxbW9iUTgtaThCM2s/edit |
2014년 11월 23일 (일) 00:46 판
introduction
- let $k\in \mathbb{Z}_{\geq 1}$ be the level
- definition
$$ \begin{align} \theta_{k,\lambda} &=\sum_{\mu\in Q^{\vee}+\frac{\lambda}{k}}e^{k(\mu-\frac{1}{2}\langle \mu,\mu \rangle \delta)}\\ &=\sum_{\mu\in Q^{\vee}+\frac{\lambda}{k}}e^{k\mu}q^{\frac{k}{2}\langle \mu,\mu \rangle} \end{align} $$
$A_1$ example
- level k=1, $\lambda=0$
- let $z=e^{-\alpha_1}$
$$ \theta_{1,0}=1 + q (1/z + z) + q^4 (1/z^2 + z^2) + q^9 (1/z^3 + z^3)+\cdots $$