"곡선"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | + | 매개화된 곡선 <math>\overrightarrow{r}(t)=(\cos t,\sin t, 3t)</math>. | |
+ | |||
+ | |||
+ | |||
+ | <math>(1,0,0)</math> 에서 <math>(1,0,6\pi)</math>까지의 곡선의 길이 | ||
+ | |||
+ | |||
2010년 9월 21일 (화) 03:32 판
매개화된 곡선 \(\overrightarrow{r}(t)=(\cos t,\sin t, 3t)\).
\((1,0,0)\) 에서 \((1,0,6\pi)\)까지의 곡선의 길이
At \((1,0,0)\), \(t=0\) and at \((1,0,6\pi)\), \(t=2\pi\)
\(\overrightarrow{r}'(t)=(-\sin t,\cos t, 3)\)
\(|\overrightarrow{r}'(t)| =\sqrt{\sin^2 t+\cos^2 t +9}=\sqrt{10}\)
The arclength is given by
\(L=\int_{0}^{2\pi}|\overrightarrow{r}'(t)| \,dt=\int_{0}^{2\pi}\sqrt{10}\,dt=2\sqrt{10}\pi\)
\(\overrightarrow{T}(t)=\frac{\overrightarrow{r}'(t)}{|\overrightarrow{r}'(t)|}=\frac{(-\sin t,\cos t, 3)}{\sqrt{10}}\)
\(\overrightarrow{T}'(t)=\frac{(-\cos t,-\sin t, 0)}{\sqrt{10}}\)
\(k=\frac{|\overrightarrow{T}'(t)|}{|\overrightarrow{r}'(t)|}=\frac{\frac{|(-\cos t,\sin t, 0)|}{\sqrt{10}}}{\sqrt{10}}=\frac{1}{10}\)