"Theta divisor"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 (section 'articles' updated) |
||
| 10번째 줄: | 10번째 줄: | ||
==articles== | ==articles== | ||
| + | * Humberto A. Diaz, The motive of a smooth Theta divisor, http://arxiv.org/abs/1603.04345v1 | ||
* Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296. | * Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296. | ||
* Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046. | * Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046. | ||
2016년 3월 16일 (수) 00:30 판
introduction
- It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant.
- It is a classical result that the evaluation at the n-torsion points, $n\geq 4$ of Riemann's theta function completely determines the abelian variety embedded in $\mathbb{P}^{n^g-1}$. (See Mumford's Tata lectures 3)
expositions
- Grushevsky, Samuel, and Klaus Hulek. “Geometry of Theta Divisors --- a Survey.” arXiv:1204.2734 [math], April 12, 2012. http://arxiv.org/abs/1204.2734.
articles
- Humberto A. Diaz, The motive of a smooth Theta divisor, http://arxiv.org/abs/1603.04345v1
- Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296.
- Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046.
- Kass, Jesse Leo, and Nicola Pagani. “Extensions of the Universal Theta Divisor.” arXiv:1507.03564 [math], July 13, 2015. http://arxiv.org/abs/1507.03564.
- Krämer, Thomas. “Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map.” arXiv:1501.00226 [math], December 31, 2014. http://arxiv.org/abs/1501.00226.
- Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375.