"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
41번째 줄: 41번째 줄:
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
==== 하위페이지 ====
 +
 +
* [[threefolds and their invariants|hyperbolic 3-manifold]]<br>
 +
** [[Chern-Simons gauge theory and invariant|Chern-Simons invariant]]<br>
 +
** [[Kashaev's volume conjecture|Kashaev's volume Conjecture]]<br>
 +
** [[triangulations and Bloch group]]<br>
 +
** [[volume of hyperbolic threefolds and L-values|volume of hyperbolic 3-manifolds and L-values]]<br>
 +
 +
 
  
 
 
 
 
54번째 줄: 70번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
  
* http://ko.wikipedia.org/wiki/
+
*   <br>
* [http://en.wikipedia.org/wiki/Figure-eight_knot_%28mathematics%29 http://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)]
+
* http://ko.wikipedia.org/wiki/[http://en.wikipedia.org/wiki/Figure-eight_knot_%28mathematics%29 ]
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])

2010년 3월 31일 (수) 14:18 판

introduction
  • volume of knot complements
  • Chern-Simons invariant of manifolds

 

 

Volume of knot complement
  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]
  • Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
  • Bloch-Wigner dilogarithm is involved

 

 

an open problem
  • Prove
    \(\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))\)
  • an open problem in integration

 

 

software

 

 

history

 

 

 

하위페이지

 

 

 

related items

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links