"Talk on Rogers-Ramanujan identity"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
110번째 줄: 110번째 줄:
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
 
*
 
*
 +
[[분류:개인노트]]

2012년 10월 28일 (일) 16:04 판

introduction==  
  • \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,
    \(H(q)=\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)\)
    \(G(q)=\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)\)
  • [McIntosh1995] 참조
  • 이로부터 다음을 알 수 있다
    \(t\to 0\) 일 때, \(q=e^{-t}\to 1\) 으로 두면
    \(\frac{H(1)}{G(1)} = \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots\)
    \(r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} = \cfrac{q^{\frac{1}{5}}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\) \(r(0)= \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots\)    
history==    
related items==  
encyclopedia==    
books==   4909919    
articles==      
question and answers(Math Overflow)==    
blogs==    
experts on the field==    
links==