"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
39번째 줄: 39번째 줄:
 
 
 
 
  
* [[2010년 books and articles]]<br>
+
* [[2010년 books and articles]]
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
52번째 줄: 52번째 줄:
 
==articles==
 
==articles==
  
*  A new proof of two identities involving Ramanujan’s cubic continued fraction<br>
+
*  A new proof of two identities involving Ramanujan’s cubic continued fraction
**  Chan, H.-C, 2010<br>
+
**  Chan, H.-C, 2010
* [http://arxiv.org/abs/math/0502323 On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions]<br>
+
* [http://arxiv.org/abs/math/0502323 On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions]
**  C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005<br>
+
**  C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
*  Some evaluations of Ramanujan’s cubic continued fraction(http://www.zentralblatt-math.org/zmath/search/?an=1148.11303)<br>
+
*  Some evaluations of Ramanujan’s cubic continued fraction(http://www.zentralblatt-math.org/zmath/search/?an=1148.11303)
**  Bhargava, S., Vasuki, K.R., Sreeramamurthy, T.G., Indian J. Pure Appl. Math. 35, 1003–1025 (2004)<br>
+
**  Bhargava, S., Vasuki, K.R., Sreeramamurthy, T.G., Indian J. Pure Appl. Math. 35, 1003–1025 (2004)
*  Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.<br>
+
*  Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.
**  Chan, H.-C,  Int. J. Number Theory<br>
+
**  Chan, H.-C,  Int. J. Number Theory
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]<br>
+
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]
**  Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)<br>
+
**  Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
* [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.]<br>
+
* [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.]
**  Watson, G. N. 1929<br>
+
**  Watson, G. N. 1929
  
 
 
 
 
69번째 줄: 69번째 줄:
 
Ramanujan's class invariants and cubic continued fraction
 
Ramanujan's class invariants and cubic continued fraction
  
Berndt, 1995<br>
+
Berndt, 1995
  
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
98번째 줄: 98번째 줄:
 
==blogs==
 
==blogs==
  
*  구글 블로그 검색<br>
+
*  구글 블로그 검색
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=

2020년 11월 13일 (금) 23:38 판

introduction

\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}\)

\(\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} \)

\(\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2\)

 

 

history

\(G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1\)

 

related items

 

 

encyclopedia


 

 

books

 


 

 

articles

 

Ramanujan's class invariants and cubic continued fraction

Berndt, 1995

 

http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

[2]


question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links