"Smyth formula for Mahler measures"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 하나는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
;thm '''[Smyth1981]'''
 
;thm '''[Smyth1981]'''
$$
+
:<math>
 
m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2)=0.3230659472\cdots \label{Smyth1}
 
m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2)=0.3230659472\cdots \label{Smyth1}
$$
+
</math>
 
where
 
where
$$L(\chi_{-3},s)=\sum_{n=1}^{\infty}\frac{\chi_{-3}(n)}{n^s}=\frac{1}{1^s}-\frac{1}{2^s}+\frac{1}{4^s}-\frac{1}{5^s}+\cdots$$
+
:<math>L(\chi_{-3},s)=\sum_{n=1}^{\infty}\frac{\chi_{-3}(n)}{n^s}=\frac{1}{1^s}-\frac{1}{2^s}+\frac{1}{4^s}-\frac{1}{5^s}+\cdots</math>
$$
+
:<math>
 
m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots
 
m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots
$$
+
</math>
  
 
==two proofs of \ref{Smyth1}==
 
==two proofs of \ref{Smyth1}==
23번째 줄: 23번째 줄:
  
 
[[분류:L-functions and L-values]]
 
[[분류:L-functions and L-values]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 23:45 기준 최신판

introduction

thm [Smyth1981]

\[ m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2)=0.3230659472\cdots \label{Smyth1} \] where \[L(\chi_{-3},s)=\sum_{n=1}^{\infty}\frac{\chi_{-3}(n)}{n^s}=\frac{1}{1^s}-\frac{1}{2^s}+\frac{1}{4^s}-\frac{1}{5^s}+\cdots\] \[ m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots \]

two proofs of \ref{Smyth1}

  • direct calculation
  • using regulator


expositions

articles