"Calabi-Yau differential equations"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(section 'articles' updated)
 
(다른 사용자 한 명의 중간 판 하나는 보이지 않습니다)
7번째 줄: 7번째 줄:
 
* Charles F. Doran, Andreas Malmendier, Calabi-Yau manifolds realizing symplectically rigid monodromy tuples, http://arxiv.org/abs/1503.07500v2
 
* Charles F. Doran, Andreas Malmendier, Calabi-Yau manifolds realizing symplectically rigid monodromy tuples, http://arxiv.org/abs/1503.07500v2
 
* Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742.
 
* Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742.
* Yang, Yifan, and Wadim Zudilin. 2010. “On $\rm Sp_4$ Modularity of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” In Gems in Experimental Mathematics, 517:381–413. Contemp. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2731075.
+
* Yang, Yifan, and Wadim Zudilin. 2010. “On <math>\rm Sp_4</math> Modularity of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” In Gems in Experimental Mathematics, 517:381–413. Contemp. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2731075.
 
* Chen, Yao-Han, Yifan Yang, and Noriko Yui. 2008. “Monodromy of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” Journal Für Die Reine Und Angewandte Mathematik. [Crelle’s Journal] 616: 167–203. doi:10.1515/CRELLE.2008.021.
 
* Chen, Yao-Han, Yifan Yang, and Noriko Yui. 2008. “Monodromy of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” Journal Für Die Reine Und Angewandte Mathematik. [Crelle’s Journal] 616: 167–203. doi:10.1515/CRELLE.2008.021.
 
* Almkvist, Gert, and Wadim Zudilin. 2006. “Differential Equations, Mirror Maps and Zeta Values.” In Mirror Symmetry. V, 38:481–515. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2282972.
 
* Almkvist, Gert, and Wadim Zudilin. 2006. “Differential Equations, Mirror Maps and Zeta Values.” In Mirror Symmetry. V, 38:481–515. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2282972.
* Stienstra, Jan, and Frits Beukers. 1985. “On the Picard-Fuchs Equation and the Formal Brauer Group of Certain Elliptic $K3$-Surfaces.” Mathematische Annalen 271 (2): 269–304. doi:10.1007/BF01455990.
+
* Stienstra, Jan, and Frits Beukers. 1985. “On the Picard-Fuchs Equation and the Formal Brauer Group of Certain Elliptic <math>K3</math>-Surfaces.” Mathematische Annalen 271 (2): 269–304. doi:10.1007/BF01455990.
* Beukers, F., and C. A. M. Peters. 1984. “A Family of $K3$ Surfaces and $\zeta (3)$.” Journal Für Die Reine Und Angewandte Mathematik 351: 42–54. doi:10.1515/crll.1984.351.42.
+
* Beukers, F., and C. A. M. Peters. 1984. “A Family of <math>K3</math> Surfaces and <math>\zeta (3)</math>.” Journal Für Die Reine Und Angewandte Mathematik 351: 42–54. doi:10.1515/crll.1984.351.42.
 +
[[분류:migrate]]

2020년 11월 14일 (토) 00:04 기준 최신판

expositions


articles

  • Andreas Gerhardus, Hans Jockers, Quantum periods of Calabi-Yau fourfolds, arXiv:1604.05325 [hep-th], April 18 2016, http://arxiv.org/abs/1604.05325
  • Charles F. Doran, Andreas Malmendier, Calabi-Yau manifolds realizing symplectically rigid monodromy tuples, http://arxiv.org/abs/1503.07500v2
  • Zudilin, V. V. 2011. “Arithmetic Hypergeometric Series.” Rossi\uı Skaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 66 (2(398)): 163–216. doi:10.1070/RM2011v066n02ABEH004742.
  • Yang, Yifan, and Wadim Zudilin. 2010. “On \(\rm Sp_4\) Modularity of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” In Gems in Experimental Mathematics, 517:381–413. Contemp. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2731075.
  • Chen, Yao-Han, Yifan Yang, and Noriko Yui. 2008. “Monodromy of Picard-Fuchs Differential Equations for Calabi-Yau Threefolds.” Journal Für Die Reine Und Angewandte Mathematik. [Crelle’s Journal] 616: 167–203. doi:10.1515/CRELLE.2008.021.
  • Almkvist, Gert, and Wadim Zudilin. 2006. “Differential Equations, Mirror Maps and Zeta Values.” In Mirror Symmetry. V, 38:481–515. AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc. http://www.ams.org/mathscinet-getitem?mr=2282972.
  • Stienstra, Jan, and Frits Beukers. 1985. “On the Picard-Fuchs Equation and the Formal Brauer Group of Certain Elliptic \(K3\)-Surfaces.” Mathematische Annalen 271 (2): 269–304. doi:10.1007/BF01455990.
  • Beukers, F., and C. A. M. Peters. 1984. “A Family of \(K3\) Surfaces and \(\zeta (3)\).” Journal Für Die Reine Und Angewandte Mathematik 351: 42–54. doi:10.1515/crll.1984.351.42.