"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
18번째 줄: 18번째 줄:
  
 
 
 
 
 
==related items==
 
 
 
 
 
 
 
 
==encyclopedia==
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2010년 books and articles]]
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
  
70번째 줄: 42번째 줄:
  
 
Berndt, 1995
 
Berndt, 1995
 
* http://www.ams.org/mathscinet
 
* [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* http://math.berkeley.edu/~reb/papers/index.html
 
* http://dx.doi.org/
 
 
 
 
 
 
  
85번째 줄: 48번째 줄:
 
[http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf ]
 
[http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf ]
  
 
+
[[분류:개인노트]]
 
 
==question and answers(Math Overflow)==
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
 
*  구글 블로그 검색
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
 
 
==experts on the field==
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
 
 
==links==
 
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
*[[분류:개인노트]]
 
[[분류:thesis]]
 
 
[[분류:q-series]]
 
[[분류:q-series]]
 
[[분류:migrate]]
 
[[분류:migrate]]

2020년 11월 14일 (토) 01:17 판

introduction

\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}\)

\(\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} \)

\(\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2\)

 

 

history

\(G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1\)

   

 

articles

 

Ramanujan's class invariants and cubic continued fraction

Berndt, 1995  

http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

[1]