"Hirota-Miwa difference equations"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* how to identify the standard objects of quantum integrable systems (transfer matrices, Baxter's $Q$-operators, etc.) with elements of classical nonlinear integrable difference equations ($\tau$-functions, Baker-Akhiezer functions, etc.).
 +
 +
 +
==dictionary==
 +
* The functional relation for commuting quantum transfer matrices of quantum integrable models is shown to coincide with the classical Hirota bilinear difference equation.
 +
* This equation is equivalent to the completely discretized classical 2D Toda lattice with open boundaries.
 +
* Elliptic solutions of Hirota's equation give a complete set of eigenvalues of the quantum transfer matrices.
 +
* Eigenvalues of Baxter's $Q$-operator are solutions to the auxiliary linear problems for the classical Hirota equation.
 +
* The elliptic solutions relevant to the Bethe ansatz are studied.
 +
* The nested Bethe ansatz equations for $A_{k−1}$-type models appear as discrete time equations of motions for zeros of classical $\tau$-functions and Baker-Akhiezer functions.
 +
* Determinant representations of the general solution to the bilinear discrete Hirota equation are analysed and a new determinant formula for eigenvalues of the quantum transfer matrices is obtained.
 +
* Difference equations for eigenvalues of the $Q$-operators which generalize Baxter's three-term $T-Q$-relation are derived
 +
 +
 +
 
==related items==
 
==related items==
 
* [[Hirota bilinear method]]
 
* [[Hirota bilinear method]]
 
* [[T-system]]
 
* [[T-system]]
 +
* [[Determinant solutions of T-systems]]
 
* [[Octahedral recurrence]]
 
* [[Octahedral recurrence]]
  
  
 
==expositions==
 
==expositions==
 +
* Zabrodin, A. 2012. “Bethe Ansatz and Hirota Equation in Integrable Models.” arXiv:1211.4428 [hep-Th, Physics:math-Ph] (November 19). http://arxiv.org/abs/1211.4428.
 +
* Zabrodin, A. V. 1998. “Hirota Equation and Bethe Ansatz.” Theoretical and Mathematical Physics 116 (1) (July 1): 782–819. doi:10.1007/BF02557123.
 +
* Wiegmann, P. 1997. “Bethe Ansatz and Classical Hirota Equation.” International Journal of Modern Physics B 11 (01n02) (January 20): 75–89. doi:10.1142/S0217979297000101.
 
* Zabrodin, A. V. 1997. “Hirota’s Difference Equations.” Theoretical and Mathematical Physics 113 (2) (November 1): 1347–1392. doi:10.1007/BF02634165. http://arxiv.org/abs/solv-int/9704001
 
* Zabrodin, A. V. 1997. “Hirota’s Difference Equations.” Theoretical and Mathematical Physics 113 (2) (November 1): 1347–1392. doi:10.1007/BF02634165. http://arxiv.org/abs/solv-int/9704001
 +
* Zabrodin, A. V. 1996. “Bethe Ansatz and Classical Hirota Equations.” arXiv:hep-th/9607162 (July 18). http://arxiv.org/abs/hep-th/9607162.
 +
 
 
 
 
  
 
==articles==
 
==articles==
* Nahm, Werner, and Sinéad Keegan. 2009. “Integrable Deformations of CFTs and the Discrete Hirota Equations”. ArXiv e-print 0905.3776. http://arxiv.org/abs/0905.3776.
 
 
* Krichever, I., O. Lipan, P. Wiegmann, and A. Zabrodin. 1996. “Quantum Integrable Systems and Elliptic Solutions of Classical Discrete Nonlinear Equations”. ArXiv e-print hep-th/9604080. http://arxiv.org/abs/hep-th/9604080.
 
* Krichever, I., O. Lipan, P. Wiegmann, and A. Zabrodin. 1996. “Quantum Integrable Systems and Elliptic Solutions of Classical Discrete Nonlinear Equations”. ArXiv e-print hep-th/9604080. http://arxiv.org/abs/hep-th/9604080.
 
* T. Miwa, Proc. Japan. Acad. 58, 9 (1982).
 
* T. Miwa, Proc. Japan. Acad. 58, 9 (1982).
 
* R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Jpn. 50, 3785 (1981).
 
* R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Jpn. 50, 3785 (1981).
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2013년 12월 17일 (화) 05:26 판

introduction

  • how to identify the standard objects of quantum integrable systems (transfer matrices, Baxter's $Q$-operators, etc.) with elements of classical nonlinear integrable difference equations ($\tau$-functions, Baker-Akhiezer functions, etc.).


dictionary

  • The functional relation for commuting quantum transfer matrices of quantum integrable models is shown to coincide with the classical Hirota bilinear difference equation.
  • This equation is equivalent to the completely discretized classical 2D Toda lattice with open boundaries.
  • Elliptic solutions of Hirota's equation give a complete set of eigenvalues of the quantum transfer matrices.
  • Eigenvalues of Baxter's $Q$-operator are solutions to the auxiliary linear problems for the classical Hirota equation.
  • The elliptic solutions relevant to the Bethe ansatz are studied.
  • The nested Bethe ansatz equations for $A_{k−1}$-type models appear as discrete time equations of motions for zeros of classical $\tau$-functions and Baker-Akhiezer functions.
  • Determinant representations of the general solution to the bilinear discrete Hirota equation are analysed and a new determinant formula for eigenvalues of the quantum transfer matrices is obtained.
  • Difference equations for eigenvalues of the $Q$-operators which generalize Baxter's three-term $T-Q$-relation are derived


related items


expositions

  • Zabrodin, A. 2012. “Bethe Ansatz and Hirota Equation in Integrable Models.” arXiv:1211.4428 [hep-Th, Physics:math-Ph] (November 19). http://arxiv.org/abs/1211.4428.
  • Zabrodin, A. V. 1998. “Hirota Equation and Bethe Ansatz.” Theoretical and Mathematical Physics 116 (1) (July 1): 782–819. doi:10.1007/BF02557123.
  • Wiegmann, P. 1997. “Bethe Ansatz and Classical Hirota Equation.” International Journal of Modern Physics B 11 (01n02) (January 20): 75–89. doi:10.1142/S0217979297000101.
  • Zabrodin, A. V. 1997. “Hirota’s Difference Equations.” Theoretical and Mathematical Physics 113 (2) (November 1): 1347–1392. doi:10.1007/BF02634165. http://arxiv.org/abs/solv-int/9704001
  • Zabrodin, A. V. 1996. “Bethe Ansatz and Classical Hirota Equations.” arXiv:hep-th/9607162 (July 18). http://arxiv.org/abs/hep-th/9607162.

 

articles

  • Krichever, I., O. Lipan, P. Wiegmann, and A. Zabrodin. 1996. “Quantum Integrable Systems and Elliptic Solutions of Classical Discrete Nonlinear Equations”. ArXiv e-print hep-th/9604080. http://arxiv.org/abs/hep-th/9604080.
  • T. Miwa, Proc. Japan. Acad. 58, 9 (1982).
  • R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Jpn. 50, 3785 (1981).