"격자의 세타함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
10번째 줄: | 10번째 줄: | ||
==예== | ==예== | ||
− | ===1차원 격자 | + | ===1차원 격자 <math>\mathbb{Z}</math>=== |
* 격자가 정수집합 <math>\mathbb Z</math> 로 주어진 경우의 세타함수 | * 격자가 정수집합 <math>\mathbb Z</math> 로 주어진 경우의 세타함수 | ||
− | + | :<math> | |
\theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau} | \theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau} | ||
− | + | </math> | |
* 이는 [[자코비 세타함수]]이며, 다음의 변환 성질을 만족한다 | * 이는 [[자코비 세타함수]]이며, 다음의 변환 성질을 만족한다 | ||
− | + | :<math> | |
\theta(-\frac{1}{\tau})=\sqrt{\frac{\tau}{i}} \theta({\tau}) | \theta(-\frac{1}{\tau})=\sqrt{\frac{\tau}{i}} \theta({\tau}) | ||
− | + | </math> | |
24번째 줄: | 24번째 줄: | ||
==세타함수의 모듈라 성질== | ==세타함수의 모듈라 성질== | ||
;정리 | ;정리 | ||
− | 유클리드 공간 | + | 유클리드 공간 <math>\mathbb{R}^n</math>의 격자 <math>L</math>과 쌍대 <math>L^{*}</math>에 대하여 다음이 성립한다 : |
− | + | :<math> | |
\theta_{L}(-\frac{1}{\tau})=(\frac{\tau}{i})^{n/2}\frac{1}{\operatorname{vol}(\mathbb{R}^n/L)} \theta_{L^{*}}({\tau}) | \theta_{L}(-\frac{1}{\tau})=(\frac{\tau}{i})^{n/2}\frac{1}{\operatorname{vol}(\mathbb{R}^n/L)} \theta_{L^{*}}({\tau}) | ||
− | + | </math> | |
;증명 | ;증명 |
2020년 11월 16일 (월) 03:56 기준 최신판
정의
- 격자 \(L\subseteq \mathbb{R}^n\) 에 대하여 세타함수를 다음과 같이 정의함
\[\theta_L(\tau)=\sum_{x\in L}q^{\frac{x^2}{2}}, \quad q=e^{2\pi i \tau}\] 여기서 \(x^2\) 은 벡터 \(x\)의 norm 을 가리킴.
예
1차원 격자 \(\mathbb{Z}\)
- 격자가 정수집합 \(\mathbb Z\) 로 주어진 경우의 세타함수
\[ \theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau} \]
- 이는 자코비 세타함수이며, 다음의 변환 성질을 만족한다
\[ \theta(-\frac{1}{\tau})=\sqrt{\frac{\tau}{i}} \theta({\tau}) \]
세타함수의 모듈라 성질
- 정리
유클리드 공간 \(\mathbb{R}^n\)의 격자 \(L\)과 쌍대 \(L^{*}\)에 대하여 다음이 성립한다 : \[ \theta_{L}(-\frac{1}{\tau})=(\frac{\tau}{i})^{n/2}\frac{1}{\operatorname{vol}(\mathbb{R}^n/L)} \theta_{L^{*}}({\tau}) \]
- 증명
포아송의 덧셈 공식으로부터 얻어진다. ■
메모
- http://sbseminar.wordpress.com/2010/05/14/lattices-and-their-invariants/
- Arizona Winter School 2009: Quadratic Forms
- http://math.mit.edu/~brubaker/Math784/thetafunctions.pdf
- http://zacharyabel.com/papers/Theta-Series-Mod_A07.pdf
관련된 항목들