"자렘바의 추측"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (새 문서: ==관련논문== * Kan, I. D. ‘A Strengthening of a Theorem of Bourgain-Kontorovich-IV’. arXiv:1503.06132 [math], 20 March 2015. http://arxiv.org/abs/1503.06132. * Bourgain, Jean,...) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 3개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==메모== | ||
+ | Zaremba's conjecture (1971) states that every positive integer number d can be represented as a denominator of a finite continued fraction <math>b/d = [d_1,d_2,...,d_k]</math>, with all partial quotients <math>d_1,d_2,\cdots,d_k</math> being bounded by an absolute constant <math>A</math>. | ||
+ | |||
==관련논문== | ==관련논문== | ||
* Kan, I. D. ‘A Strengthening of a Theorem of Bourgain-Kontorovich-IV’. arXiv:1503.06132 [math], 20 March 2015. http://arxiv.org/abs/1503.06132. | * Kan, I. D. ‘A Strengthening of a Theorem of Bourgain-Kontorovich-IV’. arXiv:1503.06132 [math], 20 March 2015. http://arxiv.org/abs/1503.06132. |
2020년 11월 16일 (월) 04:22 기준 최신판
메모
Zaremba's conjecture (1971) states that every positive integer number d can be represented as a denominator of a finite continued fraction \(b/d = [d_1,d_2,...,d_k]\), with all partial quotients \(d_1,d_2,\cdots,d_k\) being bounded by an absolute constant \(A\).
관련논문
- Kan, I. D. ‘A Strengthening of a Theorem of Bourgain-Kontorovich-IV’. arXiv:1503.06132 [math], 20 March 2015. http://arxiv.org/abs/1503.06132.
- Bourgain, Jean, and Alex Kontorovich. ‘On Zaremba’s Conjecture’. Annals of Mathematics 180, no. 1 (1 July 2014): 137–96. doi:10.4007/annals.2014.180.1.3. http://arxiv.org/abs/1103.0422.