"유한바일군의 계산 강의노트"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 14개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | |||
* Cartan matrix | * Cartan matrix | ||
* representation of basic objects | * representation of basic objects | ||
6번째 줄: | 5번째 줄: | ||
** how to represent an element of the weight lattice | ** how to represent an element of the weight lattice | ||
** how to represent an element of the Weyl group | ** how to represent an element of the Weyl group | ||
− | * change of coordinates from | + | * change of coordinates from basis of simple roots to basis of fundamental weights and vice versa |
** inverse of Cartan matrix | ** inverse of Cartan matrix | ||
* action of Weyl group on root lattice | * action of Weyl group on root lattice | ||
12번째 줄: | 11번째 줄: | ||
* how to generate all positive roots | * how to generate all positive roots | ||
* how to generate elements of the Weyl group | * how to generate elements of the Weyl group | ||
− | |||
==background== | ==background== | ||
− | === | + | ===Lie algebras=== |
* Lie algebra : vector space with a bilinear, alternating product | * Lie algebra : vector space with a bilinear, alternating product | ||
− | + | :<math> | |
[\,,\,]: \mathfrak{g}\times \mathfrak{g} \to \mathfrak{g} | [\,,\,]: \mathfrak{g}\times \mathfrak{g} \to \mathfrak{g} | ||
− | + | </math> | |
satisfying the Jacobi identity | satisfying the Jacobi identity | ||
:<math>[a, [b,c]]+[b,[c,a]]+[c,[a,b]]=0</math> | :<math>[a, [b,c]]+[b,[c,a]]+[c,[a,b]]=0</math> | ||
− | * | + | * <math>\mathfrak{sl}_2</math> : <math>2\times 2</math> matrix with trace 0 over <math>\mathbb{C}</math> with commutator <math>[a,b]=ab-ba</math> |
* basis <math>\langle e,f,h \rangle</math> | * basis <math>\langle e,f,h \rangle</math> | ||
:<math>e=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}, f=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}, h=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math> | :<math>e=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}, f=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}, h=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math> | ||
:<math>[h,e]=2e, [h,f]=-2f,[e,f]=h</math> | :<math>[h,e]=2e, [h,f]=-2f,[e,f]=h</math> | ||
+ | |||
===Cartan-Killing=== | ===Cartan-Killing=== | ||
− | * classification of finite-dim'l simple Lie algebras over | + | * classification of finite-dim'l simple Lie algebras over <math>\mathbb{C}</math> |
* key idea : use linear algebra via adjoint representation | * key idea : use linear algebra via adjoint representation | ||
− | * decomposition of | + | * decomposition of <math>\mathfrak{g}</math> relative to a maximal abelian subalgebra <math>\mathfrak{h}</math> -> root space decomposition |
− | * key structure : root | + | * key structure : root system <math>\Delta</math> (highly constrained combinatorial object), <math>A_2</math> example |
− | * possible root system of a simple Lie algebra : | + | * possible root system of a simple Lie algebra : <math>A_l,B_l,C_l,D_l,E_6,E_7,E_8,F_4,G_2</math> |
* this can be compactly encoded in Cartan matrix or Dynkin diagram | * this can be compactly encoded in Cartan matrix or Dynkin diagram | ||
37번째 줄: | 36번째 줄: | ||
* classification of finite-dim'l irr. rep'n | * classification of finite-dim'l irr. rep'n | ||
* key concept : weight space decomposition of rep'n | * key concept : weight space decomposition of rep'n | ||
− | * Cartan : dominant integral highest weight - finite-dim'l irr. rep'n (weights in the fundamental chamber, | + | * Cartan : dominant integral highest weight - finite-dim'l irr. rep'n (weights in the fundamental chamber, <math>A_2</math>) |
* character of a representaion : generating function of dimension of each weight space | * character of a representaion : generating function of dimension of each weight space | ||
− | + | :<math>\operatorname{ch}(V):=\sum_{\mu \in \mathfrak{h}^{*}} (\dim{V_{\mu}})e^{\mu}</math> | |
− | * Weyl : character formula, of irr. rep'n <math>V=L(\lambda)</math> with highest weight | + | * Weyl : character formula, of irr. rep'n <math>V=L(\lambda)</math> with highest weight <math>\lambda</math> |
− | + | :<math> | |
− | + | \operatorname{ch}(V)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w(\lambda+\rho)} }{e^{\rho}\prod_{\alpha\in \Delta_+}(1-e^{-\alpha})} | |
− | \operatorname{ch}(V) | + | </math> |
− | + | ||
− | + | ===Serre=== | |
− | \ | + | * Serre 1966 (upon the work of Chevalley, Harish-Chandra, Jacobson) |
− | + | * Chevalley generators <math>e_i,f_i, h_i\, (i=1,\cdots,l)</math> | |
+ | ** <math>\left[h_i,h_j\right]=0</math> | ||
+ | ** <math>\left[h_i,e_j\right]=a_{ij}e_j</math> | ||
+ | ** <math>\left[h_i,f_j\right]=-a_{ij}f_j</math> | ||
+ | ** <math>\left[e_i,f_j\right]=\delta _{i,j}h_i</math> | ||
+ | ** <math>\left(\operatorname{ad} e_i\right)^{1-a_{ij}}\left(e_j\right)=0</math> (<math>i\neq j</math>) | ||
+ | ** <math>\left(\operatorname{ad} f_i\right)^{1-a_{ij}}\left(f_j\right)=0</math> (<math>i\neq j</math>) | ||
+ | * this defines a simple Lie algebra with Cartan matrix <math>A</math> and settles the existence side of the Cartan-Killing classification project | ||
− | === | + | ==Weyl group== |
− | * simple Lie | + | ===notation=== |
− | * | + | * fix a Cartan matrix <math>A=(a_{ij})_{i,j\in I}</math> of a simple Lie algebra <math>A_l,B_l,C_l,D_l,E_6,E_7,E_8,F_4,G_2</math> |
− | + | * <math>P^{\vee} : =\bigoplus_{i\in I}\mathbb{Z}h_{i}</math> : dual weight lattice | |
− | \ | + | * <math>\mathfrak{h}: =\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}</math> |
− | + | * <math>P: =\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}</math> : weight lattice | |
− | * | + | * <math>\Pi^{\vee}:=\{h_{i}\in\mathfrak{h}|i\in I\}</math> : simple coroots |
+ | * <math>\Pi:=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}</math> : simple roots | ||
+ | * define fundamental weights <math>\omega_i\in \mathfrak{h}^*</math> as <math>\omega_i(h_j)=\delta_{ij}</math> where <math>\delta_{ij}</math> denotes the Kronecker delta | ||
+ | * root lattice <math>Q= \bigoplus_{i\in I}\mathbb{Z}\alpha_{i}</math> | ||
+ | * weight lattice <math>P= \bigoplus_{i\in I}\mathbb{Z}\omega_{i}</math> | ||
+ | ===definition=== | ||
+ | * define <math>s_1,\cdots, s_l \in \rm{Aut}(\mathfrak{h}^*)</math> by | ||
+ | :<math> | ||
+ | s_i(\lambda) : = \lambda - \lambda(h_i)\alpha_i,\, \lambda\in \mathfrak{h}^* | ||
+ | </math> | ||
+ | * the Weyl group <math>W</math> is a subgroup of <math>\rm{Aut}(\mathfrak{h}^*)</math> generated by <math>s_i</math> | ||
+ | * Explicitly, | ||
+ | :<math>s_i \omega_j=\omega_j -\delta_{ij}\alpha_i</math> | ||
+ | * Note that if <math>\alpha_i=\sum_{j\in I}b_{ij} \omega_j</math>, then <math>b_{ij}=a_{ji}</math>. | ||
==관련된 항목들== | ==관련된 항목들== | ||
+ | * [[바일 지표 공식 (Weyl character formula)]] | ||
* [[코스탄트 무게 중복도 공식 (Kostant weight multiplicity formula)]] | * [[코스탄트 무게 중복도 공식 (Kostant weight multiplicity formula)]] | ||
− | |||
==매스매티카 파일== | ==매스매티카 파일== |
2020년 11월 16일 (월) 04:24 기준 최신판
개요
- Cartan matrix
- representation of basic objects
- how to represent an element of the root lattice
- how to represent an element of the weight lattice
- how to represent an element of the Weyl group
- change of coordinates from basis of simple roots to basis of fundamental weights and vice versa
- inverse of Cartan matrix
- action of Weyl group on root lattice
- action of Weyl group on weight lattice
- how to generate all positive roots
- how to generate elements of the Weyl group
background
Lie algebras
- Lie algebra : vector space with a bilinear, alternating product
\[ [\,,\,]: \mathfrak{g}\times \mathfrak{g} \to \mathfrak{g} \] satisfying the Jacobi identity \[[a, [b,c]]+[b,[c,a]]+[c,[a,b]]=0\]
- \(\mathfrak{sl}_2\) \[2\times 2\] matrix with trace 0 over \(\mathbb{C}\) with commutator \([a,b]=ab-ba\)
- basis \(\langle e,f,h \rangle\)
\[e=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}, f=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}, h=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\] \[[h,e]=2e, [h,f]=-2f,[e,f]=h\]
Cartan-Killing
- classification of finite-dim'l simple Lie algebras over \(\mathbb{C}\)
- key idea : use linear algebra via adjoint representation
- decomposition of \(\mathfrak{g}\) relative to a maximal abelian subalgebra \(\mathfrak{h}\) -> root space decomposition
- key structure : root system \(\Delta\) (highly constrained combinatorial object), \(A_2\) example
- possible root system of a simple Lie algebra \[A_l,B_l,C_l,D_l,E_6,E_7,E_8,F_4,G_2\]
- this can be compactly encoded in Cartan matrix or Dynkin diagram
Cartan-Weyl
- classification of finite-dim'l irr. rep'n
- key concept : weight space decomposition of rep'n
- Cartan : dominant integral highest weight - finite-dim'l irr. rep'n (weights in the fundamental chamber, \(A_2\))
- character of a representaion : generating function of dimension of each weight space
\[\operatorname{ch}(V):=\sum_{\mu \in \mathfrak{h}^{*}} (\dim{V_{\mu}})e^{\mu}\]
- Weyl : character formula, of irr. rep'n \(V=L(\lambda)\) with highest weight \(\lambda\)
\[ \operatorname{ch}(V)=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w(\lambda+\rho)} }{e^{\rho}\prod_{\alpha\in \Delta_+}(1-e^{-\alpha})} \]
Serre
- Serre 1966 (upon the work of Chevalley, Harish-Chandra, Jacobson)
- Chevalley generators \(e_i,f_i, h_i\, (i=1,\cdots,l)\)
- \(\left[h_i,h_j\right]=0\)
- \(\left[h_i,e_j\right]=a_{ij}e_j\)
- \(\left[h_i,f_j\right]=-a_{ij}f_j\)
- \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
- \(\left(\operatorname{ad} e_i\right)^{1-a_{ij}}\left(e_j\right)=0\) (\(i\neq j\))
- \(\left(\operatorname{ad} f_i\right)^{1-a_{ij}}\left(f_j\right)=0\) (\(i\neq j\))
- this defines a simple Lie algebra with Cartan matrix \(A\) and settles the existence side of the Cartan-Killing classification project
Weyl group
notation
- fix a Cartan matrix \(A=(a_{ij})_{i,j\in I}\) of a simple Lie algebra \(A_l,B_l,C_l,D_l,E_6,E_7,E_8,F_4,G_2\)
- \(P^{\vee} : =\bigoplus_{i\in I}\mathbb{Z}h_{i}\) : dual weight lattice
- \(\mathfrak{h}: =\mathbb{Q}\otimes_{\mathbb{Z}} P^{\vee}\)
- \(P: =\{\lambda\in\mathfrak{h}^{*}|\lambda(P^{\vee})\subset \mathbb{Z}\}\) : weight lattice
- \(\Pi^{\vee}:=\{h_{i}\in\mathfrak{h}|i\in I\}\) : simple coroots
- \(\Pi:=\{\alpha_{i}\in\mathfrak{h}^{*}|i\in I, \alpha_{i}(h_j)=a_{ji}\}\) : simple roots
- define fundamental weights \(\omega_i\in \mathfrak{h}^*\) as \(\omega_i(h_j)=\delta_{ij}\) where \(\delta_{ij}\) denotes the Kronecker delta
- root lattice \(Q= \bigoplus_{i\in I}\mathbb{Z}\alpha_{i}\)
- weight lattice \(P= \bigoplus_{i\in I}\mathbb{Z}\omega_{i}\)
definition
- define \(s_1,\cdots, s_l \in \rm{Aut}(\mathfrak{h}^*)\) by
\[ s_i(\lambda) : = \lambda - \lambda(h_i)\alpha_i,\, \lambda\in \mathfrak{h}^* \]
- the Weyl group \(W\) is a subgroup of \(\rm{Aut}(\mathfrak{h}^*)\) generated by \(s_i\)
- Explicitly,
\[s_i \omega_j=\omega_j -\delta_{ij}\alpha_i\]
- Note that if \(\alpha_i=\sum_{j\in I}b_{ij} \omega_j\), then \(b_{ij}=a_{ji}\).