"GKZ hypergeometric functions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 6개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, called the GKZ hypergeometric system.
 +
 +
 
==expositions==
 
==expositions==
 
* EDUARDO CATTANI, [https://www.math.umass.edu/~cattani/hypergeom_lectures.pdf Three Lectures on Hypergeometric Functions]
 
* EDUARDO CATTANI, [https://www.math.umass.edu/~cattani/hypergeom_lectures.pdf Three Lectures on Hypergeometric Functions]
 +
* Stienstra, Jan. 2005. “GKZ Hypergeometric Structures.” arXiv:math/0511351 (November 14). http://arxiv.org/abs/math/0511351.
 +
  
 +
==articles==
 +
* Lei Fu, <math>\ell</math>-adic GKZ hypergeometric sheaf and exponential sums, arXiv:1208.1373 [math.AG], August 07 2012, http://arxiv.org/abs/1208.1373
 +
* Artamonov, D. V. ‘The Stokes Phenomenon for an Irregular Gelfand-Kapranov-Zelevinsky System Associated with the Rank One Lattice’. arXiv:1503.06345 [math], 21 March 2015. http://arxiv.org/abs/1503.06345.
  
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 +
[[분류:hypergeometric functions]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 04:27 기준 최신판

introduction

  • To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, called the GKZ hypergeometric system.


expositions


articles

  • Lei Fu, \(\ell\)-adic GKZ hypergeometric sheaf and exponential sums, arXiv:1208.1373 [math.AG], August 07 2012, http://arxiv.org/abs/1208.1373
  • Artamonov, D. V. ‘The Stokes Phenomenon for an Irregular Gelfand-Kapranov-Zelevinsky System Associated with the Rank One Lattice’. arXiv:1503.06345 [math], 21 March 2015. http://arxiv.org/abs/1503.06345.