"GKZ hypergeometric functions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
9번째 줄: | 9번째 줄: | ||
==articles== | ==articles== | ||
− | * Lei Fu, | + | * Lei Fu, <math>\ell</math>-adic GKZ hypergeometric sheaf and exponential sums, arXiv:1208.1373 [math.AG], August 07 2012, http://arxiv.org/abs/1208.1373 |
* Artamonov, D. V. ‘The Stokes Phenomenon for an Irregular Gelfand-Kapranov-Zelevinsky System Associated with the Rank One Lattice’. arXiv:1503.06345 [math], 21 March 2015. http://arxiv.org/abs/1503.06345. | * Artamonov, D. V. ‘The Stokes Phenomenon for an Irregular Gelfand-Kapranov-Zelevinsky System Associated with the Rank One Lattice’. arXiv:1503.06345 [math], 21 March 2015. http://arxiv.org/abs/1503.06345. | ||
2020년 11월 16일 (월) 04:27 기준 최신판
introduction
- To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, called the GKZ hypergeometric system.
expositions
- EDUARDO CATTANI, Three Lectures on Hypergeometric Functions
- Stienstra, Jan. 2005. “GKZ Hypergeometric Structures.” arXiv:math/0511351 (November 14). http://arxiv.org/abs/math/0511351.
articles
- Lei Fu, \(\ell\)-adic GKZ hypergeometric sheaf and exponential sums, arXiv:1208.1373 [math.AG], August 07 2012, http://arxiv.org/abs/1208.1373
- Artamonov, D. V. ‘The Stokes Phenomenon for an Irregular Gelfand-Kapranov-Zelevinsky System Associated with the Rank One Lattice’. arXiv:1503.06345 [math], 21 March 2015. http://arxiv.org/abs/1503.06345.