"String hypothesis"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 7개는 보이지 않습니다)
2번째 줄: 2번째 줄:
 
* [[Bethe ansatz]]
 
* [[Bethe ansatz]]
 
* the roots in a string are all equally spaced in the imaginary direction
 
* the roots in a string are all equally spaced in the imaginary direction
* a Bethe root consists of strings (as $L\to \infty$)
+
* a Bethe root consists of strings (as <math>L\to \infty</math>)
* $n$-string
+
* <math>n</math>-string
$$
+
:<math>
 
\{\lambda_{\alpha}+\frac{i}{2}(n-1)+\epsilon_{\alpha,1},\lambda_{\alpha}+\frac{i}{2}(n-3)+\epsilon_{\alpha,2},\cdots, \lambda_{\alpha}-\frac{i}{2}(n-1)+\epsilon_{\alpha,n}\}
 
\{\lambda_{\alpha}+\frac{i}{2}(n-1)+\epsilon_{\alpha,1},\lambda_{\alpha}+\frac{i}{2}(n-3)+\epsilon_{\alpha,2},\cdots, \lambda_{\alpha}-\frac{i}{2}(n-1)+\epsilon_{\alpha,n}\}
$$
+
</math>
where $\lambda_{\alpha}$ is a real number and $\epsilon$ small deviation
+
where <math>\lambda_{\alpha}</math> is a real number and <math>\epsilon</math> small deviation
 +
 
 +
 
 +
==Bethe Ansatz equations==
 +
* recall
 +
:<math>
 +
\begin{eqnarray}\label{bae}
 +
\left(  {\lambda_{j} - {i\over 2}
 +
\over  \lambda_{j} + {i\over 2}} \right)^{L}
 +
=  \prod_{\substack{
 +
l=1\\
 +
l\neq j}}^n
 +
{\lambda_{j} - \lambda_{l} - i
 +
\over
 +
\lambda_{j} - \lambda_{l} + i }
 +
\,, \qquad j = 1 \,, \cdots \,, n \,.
 +
\end{eqnarray}
 +
</math>.
 +
* assume that <math>\Im{\lambda}>0</math>
 +
* fix <math>n</math> and take <math>L\to \infty</math>. Then the LHS goes to <math>\infty</math>
 +
* this implies that there exists <math>l</math> such that <math>\lambda_{j} - \lambda_{l} + i</math> must be close to 0
 +
* this suggests the existence of strings
  
  
20번째 줄: 41번째 줄:
  
 
==expositions==
 
==expositions==
 +
* Nick Plantz, [http://www.staff.science.uu.nl/~henri105/Seminars/SpinChainsTalk1.pdf Bethe's Ansatz: coordinate Bethe Ansatz, Bethe-Ansatz equations]
 
* Sato-Deguchi, [http://cfim11.sciencesconf.org/conference/cfim11/Dijon_JS.pdf Numerical analysis of string solutions of the integrable XXZ spin chains]
 
* Sato-Deguchi, [http://cfim11.sciencesconf.org/conference/cfim11/Dijon_JS.pdf Numerical analysis of string solutions of the integrable XXZ spin chains]
 
* R.P. Vlijm [http://www.science.uva.nl/onderwijs/thesis/centraal/files/f1093904327.pdf Numerical solutions of the Bethe equations for the isotropic spin-1 chain]
 
* R.P. Vlijm [http://www.science.uva.nl/onderwijs/thesis/centraal/files/f1093904327.pdf Numerical solutions of the Bethe equations for the isotropic spin-1 chain]
25번째 줄: 47번째 줄:
  
 
==articles==
 
==articles==
* Volin, Dmytro. 2012. “String Hypothesis for $\mathfrak{gl}(n|m)$ Spin Chains: A Particle/Hole Democracy.” Letters in Mathematical Physics 102 (1) (October 1): 1–29. doi:[http://dx.doi.org/10.1007/s11005-012-0570-9 10.1007/s11005-012-0570-9].
+
* Gainutdinov, A. M., Wenrui Hao, Rafael I. Nepomechie, and Andrew J. Sommese. ‘Counting Solutions of the Bethe Equations of the Quantum Group Invariant Open XXZ Chain at Roots of Unity’. arXiv:1505.02104 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 8 May 2015. http://arxiv.org/abs/1505.02104.
* Mukhin, E., V. Tarasov, and A. Varchenko. 2009. “Bethe Algebra of Homogeneous $XXX$ Heisenberg Model Has Simple Spectrum.” Communications in Mathematical Physics 288 (1): 1–42. doi:10.1007/s00220-009-0733-4.
+
* Deguchi, Tetsuo, and Pulak Ranjan Giri. “Non Self-Conjugate Strings, Singular Strings and Rigged Configurations in the Heisenberg Model.” arXiv:1408.7030 [cond-Mat, Physics:hep-Th, Physics:math-Ph, Physics:nlin], August 29, 2014. http://arxiv.org/abs/1408.7030.
 +
* Kirillov, Anatol N., and Reiho Sakamoto. 2014. “Singular Solutions to the Bethe Ansatz Equations and Rigged Configurations.” arXiv:1402.0651 [math-Ph], February. http://arxiv.org/abs/1402.0651.
 +
* Nepomechie, Rafael I., and Chunguang Wang. 2013. “Algebraic Bethe Ansatz for Singular Solutions.” Journal of Physics A: Mathematical and Theoretical 46 (32): 325002. doi:10.1088/1751-8113/46/32/325002.
 +
* Volin, Dmytro. 2012. “String Hypothesis for <math>\mathfrak{gl}(n|m)</math> Spin Chains: A Particle/Hole Democracy.” Letters in Mathematical Physics 102 (1) (October 1): 1–29. doi:[http://dx.doi.org/10.1007/s11005-012-0570-9 10.1007/s11005-012-0570-9].
 +
* Mukhin, E., V. Tarasov, and A. Varchenko. 2009. “Bethe Algebra of Homogeneous <math>XXX</math> Heisenberg Model Has Simple Spectrum.” Communications in Mathematical Physics 288 (1): 1–42. doi:10.1007/s00220-009-0733-4.
 
* Hagemans, R., and J.-S. Caux. 2007. “Deformed Strings in the Heisenberg Model.” Journal of Physics A: Mathematical and Theoretical 40 (49): 14605–47. doi:10.1088/1751-8113/40/49/001.
 
* Hagemans, R., and J.-S. Caux. 2007. “Deformed Strings in the Heisenberg Model.” Journal of Physics A: Mathematical and Theoretical 40 (49): 14605–47. doi:10.1088/1751-8113/40/49/001.
 +
* Wal, A., T. Lulek, B. Lulek, and E. Kozak. “THE HEISENBERG MAGNETIC RING WITH 6 NODES: EXACT DIAGONALIZATION, BETHE ANSATZ AND STRING CONFIGURATIONS.” International Journal of Modern Physics B 13, no. 28 (November 10, 1999): 3307–21. doi:10.1142/S0217979299003039.
 
* Kirillov, A. N. 1985. “Combinatorial Identities, and Completeness of Eigenstates of the Heisenberg Magnet.” Journal of Soviet Mathematics 30 (4) (August 1): 2298–2310. doi:[http://dx.doi.org/10.1007/BF02105347 10.1007/BF02105347].
 
* Kirillov, A. N. 1985. “Combinatorial Identities, and Completeness of Eigenstates of the Heisenberg Magnet.” Journal of Soviet Mathematics 30 (4) (August 1): 2298–2310. doi:[http://dx.doi.org/10.1007/BF02105347 10.1007/BF02105347].
 
* Faddeev, L. D., and L. A. Takhtadzhyan. 1984. “Spectrum and Scattering of Excitations in the One-dimensional Isotropic Heisenberg Model.” Journal of Soviet Mathematics 24 (2) (January 1): 241–267. doi:[http://dx.doi.org/10.1007/BF01087245 10.1007/BF01087245].
 
* Faddeev, L. D., and L. A. Takhtadzhyan. 1984. “Spectrum and Scattering of Excitations in the One-dimensional Isotropic Heisenberg Model.” Journal of Soviet Mathematics 24 (2) (January 1): 241–267. doi:[http://dx.doi.org/10.1007/BF01087245 10.1007/BF01087245].
 
* Takahashi, Minoru. 1971. “One-Dimensional Heisenberg Model at Finite Temperature.” Progress of Theoretical Physics 46 (2) (August 1): 401–415. doi:[http://dx.doi.org/10.1143/PTP.46.401 10.1143/PTP.46.401].  
 
* Takahashi, Minoru. 1971. “One-Dimensional Heisenberg Model at Finite Temperature.” Progress of Theoretical Physics 46 (2) (August 1): 401–415. doi:[http://dx.doi.org/10.1143/PTP.46.401 10.1143/PTP.46.401].  
 
* Bethe, H. 1931. “Zur Theorie der Metalle.” Zeitschrift für Physik 71 (3-4) (March 1): 205–226. doi:[http://dx.doi.org/10.1007/BF01341708 10.1007/BF01341708]
 
* Bethe, H. 1931. “Zur Theorie der Metalle.” Zeitschrift für Physik 71 (3-4) (March 1): 205–226. doi:[http://dx.doi.org/10.1007/BF01341708 10.1007/BF01341708]
 
  
 
==questions==
 
==questions==
 
* http://mathoverflow.net/questions/136594/roots-of-the-xxz-bethe-ansatz-equation
 
* http://mathoverflow.net/questions/136594/roots-of-the-xxz-bethe-ansatz-equation
 +
[[분류:migrate]]

2020년 11월 16일 (월) 04:36 기준 최신판

introduction

  • Bethe ansatz
  • the roots in a string are all equally spaced in the imaginary direction
  • a Bethe root consists of strings (as \(L\to \infty\))
  • \(n\)-string

\[ \{\lambda_{\alpha}+\frac{i}{2}(n-1)+\epsilon_{\alpha,1},\lambda_{\alpha}+\frac{i}{2}(n-3)+\epsilon_{\alpha,2},\cdots, \lambda_{\alpha}-\frac{i}{2}(n-1)+\epsilon_{\alpha,n}\} \] where \(\lambda_{\alpha}\) is a real number and \(\epsilon\) small deviation


Bethe Ansatz equations

  • recall

\[ \begin{eqnarray}\label{bae} \left( {\lambda_{j} - {i\over 2} \over \lambda_{j} + {i\over 2}} \right)^{L} = \prod_{\substack{ l=1\\ l\neq j}}^n {\lambda_{j} - \lambda_{l} - i \over \lambda_{j} - \lambda_{l} + i } \,, \qquad j = 1 \,, \cdots \,, n \,. \end{eqnarray} \].

  • assume that \(\Im{\lambda}>0\)
  • fix \(n\) and take \(L\to \infty\). Then the LHS goes to \(\infty\)
  • this implies that there exists \(l\) such that \(\lambda_{j} - \lambda_{l} + i\) must be close to 0
  • this suggests the existence of strings


related items


computational resource


expositions


articles

  • Gainutdinov, A. M., Wenrui Hao, Rafael I. Nepomechie, and Andrew J. Sommese. ‘Counting Solutions of the Bethe Equations of the Quantum Group Invariant Open XXZ Chain at Roots of Unity’. arXiv:1505.02104 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 8 May 2015. http://arxiv.org/abs/1505.02104.
  • Deguchi, Tetsuo, and Pulak Ranjan Giri. “Non Self-Conjugate Strings, Singular Strings and Rigged Configurations in the Heisenberg Model.” arXiv:1408.7030 [cond-Mat, Physics:hep-Th, Physics:math-Ph, Physics:nlin], August 29, 2014. http://arxiv.org/abs/1408.7030.
  • Kirillov, Anatol N., and Reiho Sakamoto. 2014. “Singular Solutions to the Bethe Ansatz Equations and Rigged Configurations.” arXiv:1402.0651 [math-Ph], February. http://arxiv.org/abs/1402.0651.
  • Nepomechie, Rafael I., and Chunguang Wang. 2013. “Algebraic Bethe Ansatz for Singular Solutions.” Journal of Physics A: Mathematical and Theoretical 46 (32): 325002. doi:10.1088/1751-8113/46/32/325002.
  • Volin, Dmytro. 2012. “String Hypothesis for \(\mathfrak{gl}(n|m)\) Spin Chains: A Particle/Hole Democracy.” Letters in Mathematical Physics 102 (1) (October 1): 1–29. doi:10.1007/s11005-012-0570-9.
  • Mukhin, E., V. Tarasov, and A. Varchenko. 2009. “Bethe Algebra of Homogeneous \(XXX\) Heisenberg Model Has Simple Spectrum.” Communications in Mathematical Physics 288 (1): 1–42. doi:10.1007/s00220-009-0733-4.
  • Hagemans, R., and J.-S. Caux. 2007. “Deformed Strings in the Heisenberg Model.” Journal of Physics A: Mathematical and Theoretical 40 (49): 14605–47. doi:10.1088/1751-8113/40/49/001.
  • Wal, A., T. Lulek, B. Lulek, and E. Kozak. “THE HEISENBERG MAGNETIC RING WITH 6 NODES: EXACT DIAGONALIZATION, BETHE ANSATZ AND STRING CONFIGURATIONS.” International Journal of Modern Physics B 13, no. 28 (November 10, 1999): 3307–21. doi:10.1142/S0217979299003039.
  • Kirillov, A. N. 1985. “Combinatorial Identities, and Completeness of Eigenstates of the Heisenberg Magnet.” Journal of Soviet Mathematics 30 (4) (August 1): 2298–2310. doi:10.1007/BF02105347.
  • Faddeev, L. D., and L. A. Takhtadzhyan. 1984. “Spectrum and Scattering of Excitations in the One-dimensional Isotropic Heisenberg Model.” Journal of Soviet Mathematics 24 (2) (January 1): 241–267. doi:10.1007/BF01087245.
  • Takahashi, Minoru. 1971. “One-Dimensional Heisenberg Model at Finite Temperature.” Progress of Theoretical Physics 46 (2) (August 1): 401–415. doi:10.1143/PTP.46.401.
  • Bethe, H. 1931. “Zur Theorie der Metalle.” Zeitschrift für Physik 71 (3-4) (March 1): 205–226. doi:10.1007/BF01341708

questions