"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 26개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
 
* parafermionic Hilbert space
 
* parafermionic Hilbert space
* defined by the algebra of parafermionic fields <math>\psi_1</math> and <math>\psi _1^{\dagger }</math> of dimension 1-1/k and central charge 2(k-1)/(k+2)
+
* defined by the algebra of parafermionic fields <math>\psi_1</math> and <math>\psi _1^{\dagger }</math> of dimension 1-1/k and central charge
* the highest-weight modules are parametrized by an integer (Dynkin label) l with <math>0\leq l < k</math>
+
:<math>c=\frac{k \dim \mathfrak{g}}{k+h^{\vee}}-\operatorname{rank}\mathfrak{g}=\frac{3k}{k+2}-1=\frac{2(k-1)}{(k+2)}</math>
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)</math>
+
where <math>\mathfrak{g}=\mathfrak{sl}_2</math> and <math>k=2</math>
* Kac and Petersen (1984) obtained expression for the parafermion characters
+
* the highest-weight modules are parametrized by an integer (Dynkin label) <math>l</math> with <math>0\leq l < k</math>
 +
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)_k</math>
 +
* Kac and Peterson (1984) obtained expression for the parafermion characters
 
* Lepowsky-Primc (1985) expression in fermionic form
 
* Lepowsky-Primc (1985) expression in fermionic form
 
* third expression
 
* third expression
  
 
+
==examples==
 +
* <math>k=1</math>, [[Ising models]]
 +
* <math>k=2</math>, [[3-states Potts model]]
  
 
 
  
 
==<math>\mathbb{Z}_{n+1}</math> theory==
 
==<math>\mathbb{Z}_{n+1}</math> theory==
 +
*  central charge<math>\frac{2n}{n+3}</math>
  
*  central charge<br><math>\frac{2n}{n+3}</math><br>
 
 
 
 
 
 
 
 
 
 
  
 
==history==
 
==history==
27번째 줄: 23번째 줄:
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
 
+
  
 
==related items==
 
==related items==
 
+
* [[String functions and branching functions]]
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
* [[Ising models]]
+
* [[Graded parafermion theory]]
* [[3-states Potts model]]
+
 
 
 
 
  
 
+
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxZzRnSkZJZ0kyZlE/edit
  
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
==books==
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
  
 
==expositions==
 
==expositions==
 +
* Gepner, [http://www.integrable-qft.uni-wuppertal.de/program/Gepner.pdf Level Two String Functions and Rogers Ramanujan Type Identities]
 +
* http://physics.stackexchange.com/questions/76617/what-is-parafermion-in-condensed-matter-physics
  
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
 
 
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986
 
* Fortin, J. -F, P. Mathieu와/과S. O Warnaar. 2006. “Characters of graded parafermion conformal field theory”. <em>hep-th/0602248</em> (2월 23). [http://arxiv.org/abs/hep-th/0602248 ]http://arxiv.org/abs/hep-th/0602248
 
* [http://arxiv.org/abs/math/9906092 Conjugate Bailey pairs. From configuration sums and fractional-level string functions to Bailey's lemma.],Anne Schilling, S. Ole Warnaar, 1999
 
* [http://dx.doi.org/10.1007/BFb0105250 Spinons and parafermions in fermion cosets]<br>
 
**  D. C. Cabra, Lecture Notes in Physics, 1998, Volume 509/1998, 220-229<br>
 
 
* [http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 Bosonization of ZN parafermions and su(2)N Kac -Moody algebra]<br>
 
 
* [http://dx.doi.org/10.1016/0550-3213%2887%2990348-8 Modular invariant partition functions for parafermionic field theories]<br>
 
** D. Gepner and Z. Qiu (1987), Nucl. Phys. B 285, 423.
 
 
* [http://dx.doi.org/10.1016/0001-8708%2884%2990032-X Infinite-dimensional Lie algebras, theta functions and modular forms.],Kac, V.G., Peterson, D.H., Adv. Math.53, 125 (1984)<br>
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/10.1007/BFb0105250
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
==blogs==
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
==experts on the field==
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
  
==links==
+
==articles==
 +
* Bianchini, Davide, Elisa Ercolessi, Paul A. Pearce, and Francesco Ravanini. ‘RSOS Quantum Chains Associated with Off-Critical Minimal Models and <math>\mathbb{Z}_n</math> Parafermions’. arXiv:1412.4942 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 16 December 2014. http://arxiv.org/abs/1412.4942.
 +
* Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2.
 +
* Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:[http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 10.1016/0370-2693(89)91194-5].
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 +
[[분류:conformal field theory]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 06:09 기준 최신판

introduction

  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge

\[c=\frac{k \dim \mathfrak{g}}{k+h^{\vee}}-\operatorname{rank}\mathfrak{g}=\frac{3k}{k+2}-1=\frac{2(k-1)}{(k+2)}\] where \(\mathfrak{g}=\mathfrak{sl}_2\) and \(k=2\)

  • the highest-weight modules are parametrized by an integer (Dynkin label) \(l\) with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)_k\)
  • Kac and Peterson (1984) obtained expression for the parafermion characters
  • Lepowsky-Primc (1985) expression in fermionic form
  • third expression

examples


\(\mathbb{Z}_{n+1}\) theory

  • central charge\(\frac{2n}{n+3}\)


history



related items


computational resource


expositions


articles

  • Bianchini, Davide, Elisa Ercolessi, Paul A. Pearce, and Francesco Ravanini. ‘RSOS Quantum Chains Associated with Off-Critical Minimal Models and \(\mathbb{Z}_n\) Parafermions’. arXiv:1412.4942 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 16 December 2014. http://arxiv.org/abs/1412.4942.
  • Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2.
  • Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:10.1016/0370-2693(89)91194-5.