"Z k parafermion theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
 
* parafermionic Hilbert space
 
* parafermionic Hilbert space
* defined by the algebra of parafermionic fields <math>\psi_1</math> and <math>\psi _1^{\dagger }</math> of dimension 1-1/k and central charge 2(k-1)/(k+2)
+
* defined by the algebra of parafermionic fields <math>\psi_1</math> and <math>\psi _1^{\dagger }</math> of dimension 1-1/k and central charge
* the highest-weight modules are parametrized by an integer (Dynkin label) l with <math>0\leq l < k</math>
+
:<math>c=\frac{k \dim \mathfrak{g}}{k+h^{\vee}}-\operatorname{rank}\mathfrak{g}=\frac{3k}{k+2}-1=\frac{2(k-1)}{(k+2)}</math>
 +
where <math>\mathfrak{g}=\mathfrak{sl}_2</math> and <math>k=2</math>
 +
* the highest-weight modules are parametrized by an integer (Dynkin label) <math>l</math> with <math>0\leq l < k</math>
 
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)_k</math>
 
* <math>\mathbb{Z}_k</math> parafermion theory is known to be equivalent to the coset <math>\hat{\text{su}}(2)_k/\hat{u}(1)_k</math>
 
* Kac and Peterson (1984) obtained expression for the parafermion characters
 
* Kac and Peterson (1984) obtained expression for the parafermion characters
 
* Lepowsky-Primc (1985) expression in fermionic form
 
* Lepowsky-Primc (1985) expression in fermionic form
 
* third expression
 
* third expression
 +
 +
==examples==
 +
* <math>k=1</math>, [[Ising models]]
 +
* <math>k=2</math>, [[3-states Potts model]]
 +
  
 
==<math>\mathbb{Z}_{n+1}</math> theory==
 
==<math>\mathbb{Z}_{n+1}</math> theory==
 
 
*  central charge<math>\frac{2n}{n+3}</math>
 
*  central charge<math>\frac{2n}{n+3}</math>
  
 
 
 
 
 
  
 
==history==
 
==history==
30번째 줄: 30번째 줄:
 
* [[String functions and branching functions]]
 
* [[String functions and branching functions]]
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
 
* [[modular invariant partition functions|CFT on torus and modular invariant partition functions]]
* [[Ising models]]
 
* [[3-states Potts model]]
 
 
* [[Graded parafermion theory]]
 
* [[Graded parafermion theory]]
 
   
 
   
 +
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxZzRnSkZJZ0kyZlE/edit
 +
 +
 +
==expositions==
 +
* Gepner, [http://www.integrable-qft.uni-wuppertal.de/program/Gepner.pdf Level Two String Functions and Rogers Ramanujan Type Identities]
 +
* http://physics.stackexchange.com/questions/76617/what-is-parafermion-in-condensed-matter-physics
 +
  
 
==articles==
 
==articles==
 
+
* Bianchini, Davide, Elisa Ercolessi, Paul A. Pearce, and Francesco Ravanini. ‘RSOS Quantum Chains Associated with Off-Critical Minimal Models and <math>\mathbb{Z}_n</math> Parafermions’. arXiv:1412.4942 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 16 December 2014. http://arxiv.org/abs/1412.4942.
* Keegan, Sinéad, and Werner Nahm. 2011. “Nahm’s conjecture and coset models.” <em>1103.4986</em> (March 25). http://arxiv.org/abs/1103.4986
 
* Fortin, J.-F., P. Mathieu, and S. O. Warnaar. 2006. “Characters of Graded Parafermion Conformal Field Theory”. ArXiv e-print hep-th/0602248. http://arxiv.org/abs/hep-th/0602248.
 
* Schilling, Anne, and S. Ole Warnaar. “Conjugate Bailey Pairs.” arXiv:math/9906092, June 14, 1999. http://arxiv.org/abs/math/9906092.
 
* Cabra, D. C. 1998. “Spinons and Parafermions in Fermion Cosets.” In Supersymmetry and Quantum Field Theory, edited by Julius Wess and Vladimir P. Akulov, 220–229. Lecture Notes in Physics 509. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0105250.
 
 
* Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2.
 
* Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2.
 
* Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:[http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 10.1016/0370-2693(89)91194-5].
 
* Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:[http://dx.doi.org/10.1016/0370-2693%2889%2991194-5 10.1016/0370-2693(89)91194-5].
* Gepner, Doron, and Zongan Qiu. 1987. “Modular Invariant Partition Functions for Parafermionic Field Theories.” Nuclear Physics B 285: 423–453. doi:[http://dx.doi.org/10.1016/0550-3213%2887%2990348-8 10.1016/0550-3213(87)90348-8].
 
* Gepner, Doron. 1987. “New Conformal Field Theories Associated with Lie Algebras and Their Partition Functions.” Nuclear Physics B 290: 10–24. doi:[http://dx.doi.org/10.1016/0550-3213(87)90176-3 10.1016/0550-3213(87)90176-3].
 
* Kac, Victor G, and Dale H Peterson. 1984. “Infinite-dimensional Lie Algebras, Theta Functions and Modular Forms.” Advances in Mathematics 53 (2) (August): 125–264. doi:[http://dx.doi.org/10.1016/0001-8708%2884%2990032-X 10.1016/0001-8708(84)90032-X].
 
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]
[[분류:thesis]]
 
 
[[분류:conformal field theory]]
 
[[분류:conformal field theory]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 06:09 기준 최신판

introduction

  • parafermionic Hilbert space
  • defined by the algebra of parafermionic fields \(\psi_1\) and \(\psi _1^{\dagger }\) of dimension 1-1/k and central charge

\[c=\frac{k \dim \mathfrak{g}}{k+h^{\vee}}-\operatorname{rank}\mathfrak{g}=\frac{3k}{k+2}-1=\frac{2(k-1)}{(k+2)}\] where \(\mathfrak{g}=\mathfrak{sl}_2\) and \(k=2\)

  • the highest-weight modules are parametrized by an integer (Dynkin label) \(l\) with \(0\leq l < k\)
  • \(\mathbb{Z}_k\) parafermion theory is known to be equivalent to the coset \(\hat{\text{su}}(2)_k/\hat{u}(1)_k\)
  • Kac and Peterson (1984) obtained expression for the parafermion characters
  • Lepowsky-Primc (1985) expression in fermionic form
  • third expression

examples


\(\mathbb{Z}_{n+1}\) theory

  • central charge\(\frac{2n}{n+3}\)


history



related items


computational resource


expositions


articles

  • Bianchini, Davide, Elisa Ercolessi, Paul A. Pearce, and Francesco Ravanini. ‘RSOS Quantum Chains Associated with Off-Critical Minimal Models and \(\mathbb{Z}_n\) Parafermions’. arXiv:1412.4942 [cond-Mat, Physics:hep-Th, Physics:math-Ph], 16 December 2014. http://arxiv.org/abs/1412.4942.
  • Fateev, V. A., and Al. B. Zamolodchikov. “Integrable Perturbations of ZN Parafermion Models and the O(3) Sigma Model.” Physics Letters B 271, no. 1–2 (November 14, 1991): 91–100. doi:10.1016/0370-2693(91)91283-2.
  • Bilal, Adel. “Bosonization of ZN Parafermions and su(2)N KAČ-Moody Algebra.” Physics Letters B 226, no. 3–4 (August 10, 1989): 272–78. doi:10.1016/0370-2693(89)91194-5.