"Dessin d'enfant"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(차이 없음)

2020년 11월 16일 (월) 09:55 판

introduction

  • Grothendieck's theory of dessins provides a bridge between algebraic numbers and combinatorics
  • a dessin is essentially a bipartite graph embedded on a compact, oriented surface (without boundary), and that the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on (isomorphism classes of) dessins.
  • Grothendieck-Teichmüller group of a finite group $G$, denoted $\mathcal{GT}(G)$
  • there is an action of $\mathcal{GT}(G)$ on those dessins whose monodromy group is $G$, and the Galois action on the same objects factors via a map $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathcal{GT}(G)$
  • Motivation for the study of all groups $\mathcal{GT}(G)$, for all groups $G$, is increased by the fact that the combined map

$$ \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathcal{GT} := \lim_G \, \mathcal{GT}(G) $$ is injective.


memo


related items


computational resource

encyclopedia


books

  • Guralnick, Robert M., and John Shareshian. 2007. Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points. American Mathematical Soc.
  • Schneps, Leila, ed. 1994. The Grothendieck Theory of Dessins D’enfants. Vol. 200. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press. http://www.ams.org/mathscinet-getitem?mr=1305390.


expositions

articles

  • Pierre Guillot, The Grothendieck-Teichmüller group of $PSL(2, q)$, arXiv:1604.04415 [math.GR], April 15 2016, http://arxiv.org/abs/1604.04415
  • Khashayar Filom, Ali Kamalinejad, Dessins on Modular Curves, http://arxiv.org/abs/1603.01693v1
  • Planat, Michel, and Hishamuddin Zainuddin. “Zoology of Atlas-Groups: Dessins D’enfants, Finite Geometries and Quantum Commutation.” arXiv:1601.04865 [math-Ph, Physics:quant-Ph], January 19, 2016. http://arxiv.org/abs/1601.04865.
  • Hilany, Boulos El. “Counting Positive Intersection Points of a Trinomial and a $\mathbf{T}$-Nomial Curves via Groethendieck’s Dessin D’enfant.” arXiv:1512.05688 [math], December 17, 2015. http://arxiv.org/abs/1512.05688.
  • Wang, Na-Er, Roman Nedela, and Kan Hu. “Totally Symmetric Dessins with Nilpotent Automorphism Groups of Class Three.” arXiv:1511.06863 [math], November 21, 2015. http://arxiv.org/abs/1511.06863.
  • Cueto, Moisés Herradón. “An Explicit Quasiplatonic Curve with Field of Moduli $\mathbb Q(\sqrt[3]{2})$.” arXiv:1509.05819 [math], September 18, 2015. http://arxiv.org/abs/1509.05819.
  • Fine, Jonathan 2015Bias and Dessins. arXiv:1506.06389 [math]. http://arxiv.org/abs/1506.06389, accessed July 11, 2015.
  • Beffara, Vincent. ‘Dessins D’enfants for Analysts’. arXiv:1504.00244 [math], 1 April 2015. http://arxiv.org/abs/1504.00244.
  • Bose, Sownak, James Gundry, and Yang-Hui He. “Gauge Theories and Dessins d’Enfants: Beyond the Torus.” arXiv:1410.2227 [hep-Th], October 8, 2014. http://arxiv.org/abs/1410.2227.
  • Guillot, Pierre. 2014. “Some Computations with the Grothendieck-Teichm"uller Group and Equivariant Dessins D’enfants.” arXiv:1407.3112 [math], July. http://arxiv.org/abs/1407.3112.
  • Kazarian, Maxim, and Peter Zograf. 2014. “Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting.” arXiv:1406.5976 [math], June. http://arxiv.org/abs/1406.5976.