"Affine Kac-Moody algebras as central extensions of loop algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 4개는 보이지 않습니다)
6번째 줄: 6번째 줄:
  
 
==2-cocycle of loop algebra==
 
==2-cocycle of loop algebra==
* $L\mathfrak{g}$ : loop algebra
+
* <math>L\mathfrak{g}</math> : loop algebra
* $c(f,g) = \operatorname{Res}_0 \langle f dg \rangle$ Here, $\langle \cdot \rangle : \mathfrak{g}\otimes \mathfrak{g}\to \mathbb{C}$ denotes some invariant bilinear form on $\mathfrak{g}$, and $f dg$ is the $\mathfrak{g}\otimes \mathfrak{g}$-valued differential given by multiplying $f$ and $dg$
+
* <math>c(f,g) = \operatorname{Res}_0 \langle f dg \rangle</math> Here, <math>\langle \cdot \rangle : \mathfrak{g}\otimes \mathfrak{g}\to \mathbb{C}</math> denotes some invariant bilinear form on <math>\mathfrak{g}</math>, and <math>f dg</math> is the <math>\mathfrak{g}\otimes \mathfrak{g}</math>-valued differential given by multiplying <math>f</math> and <math>dg</math>
 
* in other words,
 
* in other words,
$$
+
:<math>
 
c(\gamma_1,\gamma_2) = \int \langle \gamma_1(\theta), \gamma'_2(\theta)\rangle d\theta
 
c(\gamma_1,\gamma_2) = \int \langle \gamma_1(\theta), \gamma'_2(\theta)\rangle d\theta
$$
+
</math>
  
  
 
==derivarion==
 
==derivarion==
* adding $d$ gives $\hat{\mathfrak{g}}$ a $\mathbb{Z}$-grading
+
* adding <math>d</math> gives <math>\hat{\mathfrak{g}}</math> a <math>\mathbb{Z}</math>-grading
 
* it makes the each root space finite-dimensional
 
* it makes the each root space finite-dimensional
  
  
 
==explicit construction==
 
==explicit construction==
* start with a semisimple Lie algebra $\mathfrak{g}$ with invariant form $\langle \cdot,\cdot\rangle $
+
* start with a semisimple Lie algebra <math>\mathfrak{g}</math> with invariant form <math>\langle \cdot,\cdot\rangle </math>
 
* make a vector space from it  
 
* make a vector space from it  
 
* construct the loop algbera  
 
* construct the loop algbera  
$$\hat{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]$$
+
:<math>\hat{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]</math>
$$\alpha(m)=\alpha\otimes t^m$$
+
:<math>\alpha(m)=\alpha\otimes t^m</math>
 
* Add a central element to get a central extension and give a bracket  
 
* Add a central element to get a central extension and give a bracket  
$$\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c$$
+
:<math>\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c</math>
$$[\alpha(m),\beta(n)]=[\alpha,\beta]\otimes t^{m+n}+m\delta_{m,-n}\langle \alpha,\beta\rangle c$$
+
:<math>[\alpha(m),\beta(n)]=[\alpha,\beta]\otimes t^{m+n}+m\delta_{m,-n}\langle \alpha,\beta\rangle c</math>
$$[c,x] =0, x\in \hat{\mathfrak{g}}$$
+
:<math>[c,x] =0, x\in \hat{\mathfrak{g}}</math>
* add a derivation $d=t\frac{d}{dt}$ to get
+
* add a derivation <math>d=t\frac{d}{dt}</math> to get
$$\tilde{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d$$
+
:<math>\tilde{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d</math>
 
* define a Lie bracket  
 
* define a Lie bracket  
$$[d,x]:=d(x)$$
+
:<math>[d,x]:=d(x)</math>
where $d(\alpha(n))=n\alpha(n), d(c)=0$
+
where <math>d(\alpha(n))=n\alpha(n), d(c)=0</math>
  
  
40번째 줄: 40번째 줄:
 
* l : rank of <math>\mathfrak{g}</math>
 
* l : rank of <math>\mathfrak{g}</math>
 
* <math>(a_{ij})</math> : extended Cartan matrix
 
* <math>(a_{ij})</math> : extended Cartan matrix
* $\theta$ : highest root
+
* <math>\theta</math> : highest root
 
* generators <math>e_i,h_i,f_i , (i=0,1,2,\cdots, l)</math>
 
* generators <math>e_i,h_i,f_i , (i=0,1,2,\cdots, l)</math>
 
* Serre relations
 
* Serre relations
50번째 줄: 50번째 줄:
 
** <math>\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0</math> (<math>i\neq j</math>)
 
** <math>\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0</math> (<math>i\neq j</math>)
 
===isomorphism===
 
===isomorphism===
* $e_0=f_{\theta}\otimes x, f_0=e_{\theta}\otimes x^{-1}, h_0=-h_{\theta}\otimes 1+c$
+
* <math>e_0=f_{\theta}\otimes x, f_0=e_{\theta}\otimes x^{-1}, h_0=-h_{\theta}\otimes 1+c</math>
 
+
* we choose <math>e_{\theta}</math> and <math>f_{\theta}</math> so that
 
+
:<math>
 +
(e_{\theta},f_{\theta})=1
 +
</math>
  
 
==related items==
 
==related items==
 +
* [[Affine Kac-Moody algebra]]
 
* [[Central extension of groups and Lie algebras]]
 
* [[Central extension of groups and Lie algebras]]
 
* [[Heisenberg group and Heisenberg algebra]]
 
* [[Heisenberg group and Heisenberg algebra]]
 
  
 
==expositions==
 
==expositions==

2020년 11월 16일 (월) 11:01 기준 최신판

introduction

  • Construct the loop algebra from a finite dimensional Lie algebra
  • Make a central extension
  • Add a outer derivation to compensate the degeneracy of the Cartan matrix


2-cocycle of loop algebra

  • \(L\mathfrak{g}\) : loop algebra
  • \(c(f,g) = \operatorname{Res}_0 \langle f dg \rangle\) Here, \(\langle \cdot \rangle : \mathfrak{g}\otimes \mathfrak{g}\to \mathbb{C}\) denotes some invariant bilinear form on \(\mathfrak{g}\), and \(f dg\) is the \(\mathfrak{g}\otimes \mathfrak{g}\)-valued differential given by multiplying \(f\) and \(dg\)
  • in other words,

\[ c(\gamma_1,\gamma_2) = \int \langle \gamma_1(\theta), \gamma'_2(\theta)\rangle d\theta \]


derivarion

  • adding \(d\) gives \(\hat{\mathfrak{g}}\) a \(\mathbb{Z}\)-grading
  • it makes the each root space finite-dimensional


explicit construction

  • start with a semisimple Lie algebra \(\mathfrak{g}\) with invariant form \(\langle \cdot,\cdot\rangle \)
  • make a vector space from it
  • construct the loop algbera

\[\hat{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\] \[\alpha(m)=\alpha\otimes t^m\]

  • Add a central element to get a central extension and give a bracket

\[\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\] \[[\alpha(m),\beta(n)]=[\alpha,\beta]\otimes t^{m+n}+m\delta_{m,-n}\langle \alpha,\beta\rangle c\] \[[c,x] =0, x\in \hat{\mathfrak{g}}\]

  • add a derivation \(d=t\frac{d}{dt}\) to get

\[\tilde{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c \oplus\mathbb{C}d\]

  • define a Lie bracket

\[[d,x]:=d(x)\] where \(d(\alpha(n))=n\alpha(n), d(c)=0\)


Chevalley generators

  • simple Lie algebra \(\mathfrak{g}\)
  • l : rank of \(\mathfrak{g}\)
  • \((a_{ij})\) : extended Cartan matrix
  • \(\theta\) : highest root
  • generators \(e_i,h_i,f_i , (i=0,1,2,\cdots, l)\)
  • Serre relations
    • \(\left[h,h'\right]=0\)
    • \(\left[e_i,f_j\right]=\delta _{i,j}h_i\)
    • \(\left[h,e_j\right]=\alpha_{j}(h)e_j\)
    • \(\left[h,f_j\right]=-\alpha_{j}(h)f_j\)
    • \(\left(\text{ad} e_i\right){}^{1-a_{i,j}}\left(e_j\right)=0\) (\(i\neq j\))
    • \(\left(\text{ad} f_i\right){}^{1-a_{i,j}}\left(f_j\right)=0\) (\(i\neq j\))

isomorphism

  • \(e_0=f_{\theta}\otimes x, f_0=e_{\theta}\otimes x^{-1}, h_0=-h_{\theta}\otimes 1+c\)
  • we choose \(e_{\theta}\) and \(f_{\theta}\) so that

\[ (e_{\theta},f_{\theta})=1 \]

related items

expositions