"Feynman diagrams and path integral"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 53개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==Finite-dimensional Feynman Diagrams==
 +
* {{수학노트|url=윅_정리}}
 +
* [http://www.math.sunysb.edu/%7Etony/whatsnew/column/feynman-1101/feynman1.html Finite-dimensional Feynman Diagrams]
 +
* [http://www.quantumdiaries.org/2010/02/14/lets-draw-feynman-diagams/ Let’s draw Feynman diagrams!]
  
 
 
  
 
+
==m-점 함수(m-point functions)==
 +
For any choice of m (not necessarily different) indices <math>i_1 ,\dots , i_m</math> between 1 and d, define the m-point function as follows:
  
 
+
:<math>
 +
\langle v^{i_1},\dots, v^{i_m}\rangle = \frac{1}{Z_0}\int_{{\bf R}^d} d{\bf v} ~~\exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v})v^{i_1}\dots v^{i_m}.
 +
</math>
  
 
+
The m-point functions are a step towards the ultimate aim of our calculation. They enter at this moment because they can be calculated by repeated differentiation of <math>Z_{\bf b}</math>
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">Finite-dimensional Feynman Diagrams</h5>
 
 
 
[http://www.math.sunysb.edu/%7Etony/whatsnew/column/feynman-1101/feynman1.html http://www.math.sunysb.edu/~tony/whatsnew/column/feynman-1101/feynman1.html]
 
 
 
 
 
 
 
 
 
 
 
== 2. Facts from calculus and their <em style="">d</em>-dimensional analogues ==
 
 
 
 
 
 
 
<br>
 
 
 
The basic fact from calculus that powers the whole discussion is:
 
 
 
 
 
 
 
 
 
'''Proposition 1'''
 
 
 
 
 
The identity with  <em style="">a</em> = 1  is proved by the trick of calculating the <em style="">square</em> of the integral in polar coordinates. The general identity follows by change of variable from  <em style="">x</em> to  .
 
 
 
This fact generalizes to higher-dimensional integrals. Set   '''v''' = (<em style="">v</em><sup style="">1</sup>, ..., <em style="">v<sup style="">d</sup></em>) and   <em style="">d</em>'''v''' = (<em style="">dv</em><sup style="">1</sup> ... <em style="">dv<sup style="">d</sup></em>), and let   <em style="">A</em>   be a symmetric   <em style="">d</em> by <em style="">d</em>   matrix.
 
 
 
 
 
 
 
 
 
'''Proposition 2'''<br>
 
 
 
 
 
We use the fact that a symmetric matrix <em style="">A</em> is diagonalizable: there exists an orthogonal matrix <em style="">U</em> (so <em style="">U</em><sup style="">t</sup> = <em style="">U</em><sup style="">-1</sup>) such that <em style="">UAU</em><sup style="">-1</sup> is the diagonal matrix <em style="">B</em> whose only nonzero entries are <em style="">b</em><sub style="">11</sub>, ... , <em style="">b<sub style="">dd</sub></em> along the diagonal. Then <em style="">A = U<sup style="">-1</sup>BU</em> and '''v'''<sup style="">t</sup><em style="">A</em>'''v''' = '''v'''<sup style="">t</sup><em style="">U</em><sup style="">-1</sup><em style="">B U</em>'''v''' = '''v'''<sup style="">t</sup><em style="">U</em><sup style="">t</sup><em style="">B U</em>'''v''' = '''w'''<sup style="">t</sup><em style="">B</em>'''w''' where '''w''' = <em style="">U</em>'''v''', using <em style="">U</em><sup style="">t</sup> = <em style="">U</em><sup style="">-1</sup> and (<em style="">U</em>'''v''')<sup style="">t</sup> ='''v'''<sup style="">t</sup><em style="">U</em><sup style="">t</sup>. Since <em style="">U</em> is orthogonal   det<em style="">U</em> = 1   and the change of variable from '''v''' to '''w''' does not change the integral:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
'''Proposition 3'''
 
 
 
 
 
This follows from Proposition 1 by completion of the square in the exponent and a change of variables.
 
 
 
The generalization to <em style="">d</em> dimensions replaces <em style="">a</em> with <em style="">A</em> as before and <em style="">b</em> with the vector '''b''' = (<em style="">b</em><sup style="">1</sup>, ... , <em style="">b<sup style="">d</sup></em>)
 
 
 
 
 
 
 
 
 
'''Proposition 4'''
 
 
 
 
 
This is proven exactly like Proposition 2. If we write this integral as <em style="">Z</em><sub style="">'''b'''</sub> then the integral of Proposition 2 is <em style="">Z</em><sub style="">0</sub> and this proposition can be rewritten as
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
== 3. <em style="">m</em>-point functions ==
 
 
 
 
 
 
 
<br>
 
 
 
For any choice of <em style="">m</em> (not necessarily different) indices <em style="">i</em><sub style="">1</sub>, ... , <em style="">i<sub style="">m</sub></em> between 1 and <em style="">d</em>, define the <em style="">m</em><em style="">-point function</em> as follows:
 
 
 
 
 
 
 
 
 
 
 
The <em style="">m</em>-point functions are a step towards the ultimate aim of our calculation. They enter at this moment because <em style="">they can be calculated by repeated differentiation of</em><em style="">Z</em><sub style="">'''b'''</sub>
 
  
 
For example, note that
 
For example, note that
  
 
+
:<math>
 
+
\begin{aligned}
 
+
\frac{\partial Z_{\bf b}}{\partial b^i} &= \frac{\partial}{\partial b^i}\int_{{\bf R}^d} d{\bf v} ~~ \exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v})\\
 +
{} &= \int_{{\bf R}^d} d{\bf v} ~~ \frac{\partial}{\partial b^i}\exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) \\
 +
{} &= \int_{{\bf R}^d} d{\bf v} ~~ \exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) v^i
 +
\end{aligned}
 +
</math>
  
 
+
So the 1-point function <math>v^i</math> is given by
 +
:<math>
 +
\langle v^i \rangle = \frac{1}{Z_0} \frac{\partial Z_{\bf b}}{\partial b^i}\vert _{{\bf b} =0} = \frac{\partial}{\partial b^i} \exp({\scriptstyle\frac{1}{2}}{\bf b}^tA^{-1}{\bf b})_{\vert _{{\bf b} =0}}
 +
</math>
  
 
+
Similarly the m-point function <math>\langle v^{i_1}\dots v^{i_m}\rangle</math> is given by
  
So the 1-point function <<em style="">v<sup style="">i</sup></em>> is given by
+
:<math>
 +
\begin{aligned}
 +
\langle v^{i_1}, \dots,  v^{i_m}\rangle =&  \frac{1}{Z_0} (\frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial b^{i_m}}Z_{\bf b})_{\textstyle \vert _{{\bf b} =0}}\\
 +
{}=& \frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial b^{i_m}} \exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})_{\textstyle \vert _{{\bf b} =0}}
 +
\end{aligned}
 +
</math>
  
 
 
  
 
+
== Wick's Theorem ==
  
<br>
+
Calculating high-order derivatives of a function like <math>\exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})</math> can be very messy. A useful theorem reduces the calculation to combinatorics.
  
Similarly the <em style="">m</em>-point function  is given by
+
;Wick's theorem
 +
:<math>\displaystyle \frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial b^{i_m}}\exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})_{\vert _{{\bf b} =0}}=
 +
A^{-1}_{\textstyle i_{p_1},i_{p_2}} \cdots A^{-1}_{\textstyle i_{p_{m-1}},i_{p_m}},</math>
  
 
+
where the sum is taken over all pairings <math>(i_{p_1},i_{p_2}), \dots, (i_{p_{m-1}},i_{p_m})</math> of <math>i_1,\cdots, i_m</math>
  
 
+
Wick's theorem is proved (a careful counting argument) in texts on quantum field theory. The most detailed explanation is in S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Evanston, IL, Row, Peterson 1961.
  
 
 
 
 
 
 
 
 
 
== 4. Wick's Theorem ==
 
 
<br>
 
 
 
 
 
Calculating high-order derivatives of a function like  can be very messy. A useful theorem reduces the calculation to combinatorics.
 
 
'''Wick's theorem'''
 
 
 
 
 
where the sum is taken over all pairings  of   <em style="">i</em><sub style="">1</sub>, ..., <em style="">i<sub style="">m</sub></em><br><br> Wick's theorem is proved (a careful counting argument) in texts on quantum field theory. The most detailed explanation is in S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Evanston, IL, Row, Peterson 1961.
 
  
 +
===examples===
 
Let us calculate a couple of examples.
 
Let us calculate a couple of examples.
  
To begin, it is useful to write with (the sums running from 1 to <em style="">d</em>) using the series expansion   exp <em style="">x</em> = 1 + <em style="">x</em> +<em style="">x</em><sup style="">2</sup>/2 +<em style="">x</em><sup style="">3</sup>/3! ... . The typical term will be . This term is a homogeneous polynomial in the <em style="">b<sup style="">i</sup></em> of degree 2<em style="">n</em>
+
To begin, it is useful to write <math>\exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})</math> with <math>{\bf b}^tA^{-1}{\bf b}=\sum A_{i,j}^{-1}b^ib^j</math>
 +
(the sums running from 1 to <math>d</math>) using the series expansion
 +
:<math>
 +
\exp x=1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots
 +
</math>  
 +
The typical term will be <math>(1/n!)(1/2^n)(\sum A^{-1}_{i,j}b^ib^j)^n</math> . This term is a homogeneous polynomial in the <em style="">b<sup style="">i</sup></em> of degree 2<em style="">n</em>
  
Differentiating <em style="">k</em> times a homogeneous polynomial of degree 2<em style="">n</em> and evaluating at zero will give zero unless <em style="">k</em> = 2<em style="">n</em>. So the job is to analyze the result of 2<em style="">n</em> differentiations on .
+
Differentiating <em style="">k</em> times a homogeneous polynomial of degree 2<em style="">n</em> and evaluating at zero will give zero unless <em style="">k</em> = 2<em style="">n</em>. So the job is to analyze the result of 2<em style="">n</em> differentiations on <math>(1/n!)(1/2^n)(\sum A^{-1}_{i,j}b^ib^j)^n</math>.
  
 
The differentiation carried out most frequently in these calculations is
 
The differentiation carried out most frequently in these calculations is
 +
:<math>\displaystyle \frac{\partial}{\partial b^{k}}(\frac{1}{2}\sum_{i,j=1}^d A^{-1}_{i,j}b^ib^j) = \sum_{i=1}^d A^{-1}_{i,k}b^i,</math>
  
where we use the symmetry of the matrix <em style="">A</em><sup style="">-1</sup>, a direct consequence of the symmetry of <em style="">A</em>.
 
  
In what follows  will be abbreviated as .
+
where we use the symmetry of the matrix <math>A^{-1}</math>, a direct consequence of the symmetry of <math>A</math>.
  
 
+
In what follows <math>\frac{\partial}{\partial b^{i}}</math> will be abbreviated as <math>\partial_i</math> .
  
* <em style="">n</em> = 1.<em style="">A</em><sup style="">-1</sup><sub style="">1,2</sub>, using the symmetry of the matrix <em style="">A</em><sup style="">-1</sup>. The same calculation shows that  <br>
 
  
 +
====n=1====
 +
:<math>
 +
\partial_2 \partial_1(\frac{1}{2}\sum A^{-1}_{i,j}b^ib^j) = A^{-1}_{1,2}
 +
</math>
 +
using the symmetry of the matrix <math>A^{-1}</math>. The same calculation shows that
 +
:<math>
 +
\partial_1 \partial_1(\frac{1}{2}\sum A^{-1}_{i,j}b^ib^j) = A^{-1}_{1,1}
 +
</math>
 
Note that (1,2) and (2,1) count as the same pairing.
 
Note that (1,2) and (2,1) count as the same pairing.
  
 
+
====n=2====
 +
:<math>
 +
\begin{aligned}
 +
\partial_4\partial_3\partial_2\partial_1(1/2!)(1/2^2)(\sum A^{-1}_{i,j}b^ib^j)^2 =& \partial_4\partial_3\partial_2
 +
(1/2)(\sum A^{-1}_{i,j}b^ib^j)( \sum A^{-1}_{1,j}b^j)  \\
 +
{}=& [(\sum A^{-1}_{2,j}b^j)( \sum A^{-1}_{1,j}b^j) +(1/2)(\sum A^{-1}_{i,j}b^ib^j)A^{-1}_{1,2}] \\
 +
{}=& \partial_4[A^{-1}_{2,3}( \sum A^{-1}_{1,j}b^j)+(\sum A^{-1}_{2,j}b^j)A^{-1}_{1,3}
 +
+(\sum A^{-1}_{3,j}b^j)A^{-1}_{1,2}] \\
 +
{}=& A^{-1}_{2,3}A^{-1}_{1,4} + A^{-1}_{2,4}A^{-1}_{1,3} + A^{-1}_{3,4}A^{-1}_{1,2}
 +
\end{aligned}
 +
</math>
  
* <em style="">n</em> = 2
+
Similarly:
 +
:<math>
 +
\begin{aligned}
 +
\partial_4\partial_3\partial_1\partial_1~~{\rm gives~~}2A^{-1}_{1,4}A^{-1}_{1,3} + A^{-1}_{3,4}A^{-1}_{1,1}\\
 +
\partial_4\partial_1\partial_1\partial_1~~{\rm gives~~} 3A^{-1}_{1,4}A^{-1}_{1,1} \\
 +
\partial_4\partial_4\partial_1\partial_1~~{\rm gives~~}  2 A^{-1}_{1,4}A^{-1}_{1,4} + A^{-1}_{4,4}A^{-1}_{1,1}\\
 +
\partial_1\partial_1\partial_1\partial_1~~{\rm gives~~} 3 A^{-1}_{1,1}A^{-1}_{1,1} \\
 +
\end{aligned}
 +
</math>
 +
  
Similarly:
+
== The first appearance of graphs ==
 +
In the last section we calculated some 2 and 4-point functions:
 +
:<math>\langle v^1,v^2 \rangle=A^{-1}_{1,2}</math>
 +
:<math>\langle v^1,v^1 \rangle=A^{-1}_{1,1}</math>
 +
:<math>\langle v^1,v^2,v^3,v^4 \rangle=A^{-1}_{2,3}A^{-1}_{1,4}+A^{-1}_{2,4}A^{-1}_{1,3}+A^{-1}_{3,4}A^{-1}_{1,2}</math>
 +
:<math>\langle v^1,v^1,v^3,v^4 \rangle=2A^{-1}_{1,4}A^{-1}_{1,3}+A^{-1}_{3,4}A^{-1}_{1,1}</math>
 +
:<math>\langle v^1,v^1,v^1,v^4 \rangle=3A^{-1}_{1,4}A^{-1}_{1,1}</math>
 +
:<math>\langle v^1,v^1,v^4,v^4 \rangle=2A^{-1}_{1,4}A^{-1}_{1,4}+A^{-1}_{4,4}A^{-1}_{1,1}</math>
 +
:<math>\langle v^1,v^1,v^1,v^1 \rangle=3A^{-1}_{1,1}A^{-1}_{1,1}</math>
  
 
+
It is convenient to represent each of products appearing on the right as a <em style="">graph</em>, where the vertices represent the indices of the coordinates <math>v_i</math> appearing in the m-point function, and each :<math>A^{-1}_{i,j}</math> becomes an edge from vertex i to vertex j. Here are the graphs corresponding to the terms in the 4-point functions above.
  
 
+
  
 
+
== Calculations with a potential function, ``Feynman Rules'' ==
  
 
 
 
 
 
 
  
== 5. The first appearance of graphs ==
 
  
<br>
+
  
 
+
The integrals of interest in Physics have the form
  
In the last section we calculated some 2 and 4-point functions:
 
  
<<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>> = <em style="">A</em><sup style="">-1</sup><sub style="">1,2</sub>
 
  
<<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>> = <em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>,<em style="">v</em><sup style="">3</sup>,<em style="">v</em><sup style="">4</sup>> = <em style="">A</em><sup style="">-1</sup><sub style="">2,3</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub> + <em style="">A</em><sup style="">-1</sup><sub style="">2,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,3</sub> + <em style="">A</em><sup style="">-1</sup><sub style="">34</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,2</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">3</sup>,<em style="">v</em><sup style="">4</sup>> = 2 <em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,3</sub> + <em style="">A</em><sup style="">-1</sup><sub style="">3,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">4</sup>> = 3 <em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">4</sup>,<em style="">v</em><sup style="">4</sup>> = 2<em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,4</sub> + <em style="">A</em><sup style="">-1</sup><sub style="">4,4</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">1</sup>> = 3 <em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub><em style="">A</em><sup style="">-1</sup><sub style="">1,1</sub>
+
which we rewrite using the series expansion for the exponential as
  
<br>
 
  
It is convenient to represent each of products appearing on the right as a <em style="">graph</em>, where the vertices represent the indices of the coordinates <em style="">v<sup style="">i</sup></em> appearing in the <em style="">m</em>-point function, and each <em style="">A</em><sup style="">-1</sup><em style=""><sub style="">i,j</sub></em> becomes an edge from vertex <em style="">i</em> to vertex <em style="">j</em>. Here are the graphs corresponding to the terms in the 4-point functions above.
 
  
 
 
  
  
 +
If <em style="">U</em> is a polynomial in the coordinate functions <em style="">v</em><sup style="">1</sup>, ...<em style="">v<sup style="">d</sup></em>, then each term in the sum of integrals is a sum of <em style="">m</em>-point functions, and can be evaluated by our method, which can be written symbolically as:
  
== 6. Calculations with a potential function, ``Feynman Rules'' ==
 
  
<br>
 
  
 
 
  
The integrals of interest in Physics have the form
 
  
which we rewrite using the series expansion for the exponential as
+
<em style="">Example:</em> This example is formally like the `` theory.'' We take  and analyze
  
<br>
 
  
If <em style="">U</em> is a polynomial in the coordinate functions <em style="">v</em><sup style="">1</sup>, ...<em style="">v<sup style="">d</sup></em>, then each term in the sum of integrals is a sum of <em style="">m</em>-point functions, and can be evaluated by our method, which can be written symbolically as:
 
  
<br>
 
  
<em style="">Example:</em> This example is formally like the `` theory.'' We take  and analyze
 
  
 
using the abbreviation  =  as before.
 
using the abbreviation  =  as before.
227번째 줄: 154번째 줄:
 
These terms will involve 6 derivatives; their sum is:
 
These terms will involve 6 derivatives; their sum is:
  
 
+
 +
 
 +
 
  
 
By Wick's Theorem we can rewrite this sum as
 
By Wick's Theorem we can rewrite this sum as
  
 
+
 +
 
 +
 
  
 
where the inside sum is taken over all pairings (<em style="">i</em><sub style="">1</sub>,<em style="">i</em><sub style="">2</sub>),(<em style="">i</em><sub style="">3</sub>,<em style="">i</em><sub style="">4</sub>)(<em style="">i</em><sub style="">5</sub><em style="">i</em><sub style="">6</sub>) of <em style="">i, j, k, i', j', k'</em>.
 
where the inside sum is taken over all pairings (<em style="">i</em><sub style="">1</sub>,<em style="">i</em><sub style="">2</sub>),(<em style="">i</em><sub style="">3</sub>,<em style="">i</em><sub style="">4</sub>)(<em style="">i</em><sub style="">5</sub><em style="">i</em><sub style="">6</sub>) of <em style="">i, j, k, i', j', k'</em>.
237번째 줄: 168번째 줄:
 
These pairings can also be represented by graphs, very much in the same way that we used for <em style="">m</em>-point functions: there will be one trivalent vertex for each <em style="">u</em> factor, and one edge for each <em style="">A</em><sup style="">-1</sup>. In this case there will be exactly two distinct graphs, according as the number of (unprimed, primed) index pairs is 1 or 3.
 
These pairings can also be represented by graphs, very much in the same way that we used for <em style="">m</em>-point functions: there will be one trivalent vertex for each <em style="">u</em> factor, and one edge for each <em style="">A</em><sup style="">-1</sup>. In this case there will be exactly two distinct graphs, according as the number of (unprimed, primed) index pairs is 1 or 3.
  
<br> The ``dumbbell'' and the ``theta''are the two 3-valent 2-vertex graphs.
+
The ``dumbbell'' and the ``theta''are the two 3-valent 2-vertex graphs.
  
 
Summing over all possible labellings of these graphs will give some duplication, since each graph has symmetries that make different labellings correspond to the same pairing.
 
Summing over all possible labellings of these graphs will give some duplication, since each graph has symmetries that make different labellings correspond to the same pairing.
  
 
+
  
<br> All eight of these labelings correspond to the same product: <em style="">u</em><sub style="">123</sub> <em style="">u</em><sub style="">456</sub> <em style="">A</em><sup style="">-1</sup><sub style="">13</sub> <em style="">A</em><sup style="">-1</sup><sub style="">25</sub> <em style="">A</em><sup style="">-1</sup><sub style="">46</sub>.
+
All eight of these labelings correspond to the same product: <em style="">u</em><sub style="">123</sub> <em style="">u</em><sub style="">456</sub> <em style="">A</em><sup style="">-1</sup><sub style="">13</sub> <em style="">A</em><sup style="">-1</sup><sub style="">25</sub> <em style="">A</em><sup style="">-1</sup><sub style="">46</sub>.
  
<br> All six of these labelings, and their six left-right mirror images, correspond to the same product: <em style="">u</em><sub style="">123</sub> <em style="">u</em><sub style="">456</sub> <em style="">A</em><sup style="">-1</sup><sub style="">14</sub> <em style="">A</em><sup style="">-1</sup><sub style="">25</sub> <em style="">A</em><sup style="">-1</sup><sub style="">36</sub>.
+
All six of these labelings, and their six left-right mirror images, correspond to the same product: <em style="">u</em><sub style="">123</sub> <em style="">u</em><sub style="">456</sub> <em style="">A</em><sup style="">-1</sup><sub style="">14</sub> <em style="">A</em><sup style="">-1</sup><sub style="">25</sub> <em style="">A</em><sup style="">-1</sup><sub style="">36</sub>.
  
 
+
  
 
The ``dumbbell'' graph has an <em style="">automorphism</em> (symmetry) group of order eight, whereas the ``theta'' graph has an automorphism group of order twelve.
 
The ``dumbbell'' graph has an <em style="">automorphism</em> (symmetry) group of order eight, whereas the ``theta'' graph has an automorphism group of order twelve.
253번째 줄: 184번째 줄:
 
Keeping this in mind, we may rewrite the coefficient of  as:
 
Keeping this in mind, we may rewrite the coefficient of  as:
  
 
+
 +
 
 +
 
  
 
where the sum  is taken over the set of the topologically distinct trivalent graphs with two vertices (in this case, 2), the products are taken over the set of all vertices <em style="">v</em> (here there are 2) and the set of all edges <em style="">e</em> (here there are 3) respectively, and |Aut<em style="">G</em>| is the number of automorphisms of the graph <em style="">G</em>.
 
where the sum  is taken over the set of the topologically distinct trivalent graphs with two vertices (in this case, 2), the products are taken over the set of all vertices <em style="">v</em> (here there are 2) and the set of all edges <em style="">e</em> (here there are 3) respectively, and |Aut<em style="">G</em>| is the number of automorphisms of the graph <em style="">G</em>.
259번째 줄: 192번째 줄:
 
In general, the ``Feynman rules'' for computing the coefficient of  in the expansion of <em style="">Z<sub style="">U</sub></em> are stated in exactly this way, except that the sum  is over trivalent graphs with 2<em style="">n</em> vertices (and 3<em style="">n</em> edges).
 
In general, the ``Feynman rules'' for computing the coefficient of  in the expansion of <em style="">Z<sub style="">U</sub></em> are stated in exactly this way, except that the sum  is over trivalent graphs with 2<em style="">n</em> vertices (and 3<em style="">n</em> edges).
  
 
+
  
 
== 7. Correlation functions ==
 
== 7. Correlation functions ==
  
<br>
 
  
 
+
 
 +
  
 
The way path integrals are used in quantum field theory is, very roughly speaking, that the probability amplitude of a process going from point <em style="">v</em><sub style="">1</sub> to point <em style="">v</em><sub style="">2</sub> is an integral over all possible ways of getting from <em style="">v</em><sub style="">1</sub> to <em style="">v</em><sub style="">2</sub>. In our finite-dimensional model, each of these ``ways'' is represented by a point '''v''' in '''R'''<em style=""><sup style="">n</sup></em> and the probability measure assigned to that way is . The integral is what we called before a 2-point function
 
The way path integrals are used in quantum field theory is, very roughly speaking, that the probability amplitude of a process going from point <em style="">v</em><sub style="">1</sub> to point <em style="">v</em><sub style="">2</sub> is an integral over all possible ways of getting from <em style="">v</em><sub style="">1</sub> to <em style="">v</em><sub style="">2</sub>. In our finite-dimensional model, each of these ``ways'' is represented by a point '''v''' in '''R'''<em style=""><sup style="">n</sup></em> and the probability measure assigned to that way is . The integral is what we called before a 2-point function
 +
 +
  
 
and what we will now call a <em style="">correlation function</em>.
 
and what we will now call a <em style="">correlation function</em>.
  
 
We continue with the example of the cubic potential
 
We continue with the example of the cubic potential
 +
 
.
 
.
 +
 
By our previous calculations,
 
By our previous calculations,
 +
 +
  
 
In terms of Wick's Theorem and our graph interpretation of pairings, this becomes:
 
In terms of Wick's Theorem and our graph interpretation of pairings, this becomes:
  
 
+
 +
 
 +
 
  
 
where now the sum is over all graphs <em style="">G</em> with two single-valent vertices (the ends) labeled 1 and 2, and <em style="">n</em> 3-valent vertices.
 
where now the sum is over all graphs <em style="">G</em> with two single-valent vertices (the ends) labeled 1 and 2, and <em style="">n</em> 3-valent vertices.
  
 
+
  
<br> This graph occurs in the calculation of the coefficient of  in <<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>>.
+
This graph occurs in the calculation of the coefficient of  in <<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>>.
  
 
The <em style="">k</em>-point correlation functions are similarly defined and calculated. Here is where we begin to see the usual ``Feynman diagrams.''
 
The <em style="">k</em>-point correlation functions are similarly defined and calculated. Here is where we begin to see the usual ``Feynman diagrams.''
291번째 줄: 232번째 줄:
 
This graph occurs in the calculation of the coefficient of  in <<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>,<em style="">v</em><sup style="">3</sup>,<em style="">v</em><sup style="">4</sup>>.
 
This graph occurs in the calculation of the coefficient of  in <<em style="">v</em><sup style="">1</sup>,<em style="">v</em><sup style="">2</sup>,<em style="">v</em><sup style="">3</sup>,<em style="">v</em><sup style="">4</sup>>.
  
 
 
 
<h5>history</h5>
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
<h5>related items</h5>
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
<h5>books</h5>
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
<h5>expositions</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
* [http://arxiv.org/abs/quant-ph/0510032 Kindergarten Quantum Mechanics]<br>
 
**  Bob Coecke, 2005<br>
 
*   <br>
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
  
<h5>blogs</h5>
 
  
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
  
 
+
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxSU5CQm1IVmZoQlk/edit
  
 
 
  
<h5>experts on the field</h5>
+
==books==
  
* http://arxiv.org/
+
* [http://library.nu/docs/ZFNPBDHVMK/Drawing%20Theories%20Apart%3A%20The%20Dispersion%20of%20Feynman%20Diagrams%20in%20Postwar%20Physics Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics]
  
 
 
  
 
+
==expositions==
 +
* Henn, Johannes M. “Lectures on Differential Equations for Feynman Integrals.” arXiv:1412.2296 [hep-Ph, Physics:hep-Th, Physics:math-Ph], December 6, 2014. http://arxiv.org/abs/1412.2296.
 +
* [http://www.science20.com/crawler_superland/richard_feynmans_functional_integral_1_action-89975 Feynman's functional integrals]
 +
* [http://www.lepp.cornell.edu/~pt267/undergradparticles.html Particle Physics for Undergrads]
 +
* Fiorenza, Domenico, and Riccardo Murri. 2001. “Feynman Diagrams via Graphical Calculus.” arXiv:math/0106001 (May 31). http://arxiv.org/abs/math/0106001.
 +
* [http://www.phy.pmf.unizg.hr/~kkumer/articles/feynman_for_beginners.pdf Feynman diagrams for beginners]
 +
* Coecke, Bob. “Kindergarten Quantum Mechanics.” arXiv:quant-ph/0510032, October 4, 2005. http://arxiv.org/abs/quant-ph/0510032.
  
<h5>links</h5>
+
==articles==
 +
* Timothy Nguyen, The Perturbative Approach to Path Integrals: A Succinct Mathematical Treatment, arXiv:1505.04809 [math-ph], May 18 2015, http://arxiv.org/abs/1505.04809
 +
* http://arxiv.org/abs/1601.03646
 +
* http://arxiv.org/abs/1112.4360
 +
* Kotikov, A. V. “The Property of Maximal Transcendentality: Calculation of Feynman Integrals.” arXiv:1601.00486 [hep-Ph, Physics:hep-Th], January 4, 2016. http://arxiv.org/abs/1601.00486.
 +
* http://arxiv.org/abs/1512.06407
 +
* Purkart, Julian. “The Signed Permutation Group on Feynman Graphs.” arXiv:1512.02408 [hep-Th, Physics:math-Ph], December 8, 2015. http://arxiv.org/abs/1512.02408.
 +
* Borinsky, Michael, and Dirk Kreimer. “Feynman Diagrams and Their Algebraic Lattices.” arXiv:1512.05237 [hep-Th, Physics:math-Ph], December 16, 2015. http://arxiv.org/abs/1512.05237.
 +
* Fiorentin, Michele Re. “FaRe: A Mathematica Package for Tensor Reduction of Feynman Integrals.” arXiv:1507.03527 [hep-Ph, Physics:hep-Th], July 13, 2015. http://arxiv.org/abs/1507.03527.
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
[[분류:physics]]
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
[[분류:math and physics]]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
[[분류:QFT]]
* http://functions.wolfram.com/
 

2020년 11월 16일 (월) 10:01 기준 최신판

Finite-dimensional Feynman Diagrams


m-점 함수(m-point functions)

For any choice of m (not necessarily different) indices \(i_1 ,\dots , i_m\) between 1 and d, define the m-point function as follows:

\[ \langle v^{i_1},\dots, v^{i_m}\rangle = \frac{1}{Z_0}\int_{{\bf R}^d} d{\bf v} ~~\exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v})v^{i_1}\dots v^{i_m}. \]

The m-point functions are a step towards the ultimate aim of our calculation. They enter at this moment because they can be calculated by repeated differentiation of \(Z_{\bf b}\)

For example, note that

\[ \begin{aligned} \frac{\partial Z_{\bf b}}{\partial b^i} &= \frac{\partial}{\partial b^i}\int_{{\bf R}^d} d{\bf v} ~~ \exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v})\\ {} &= \int_{{\bf R}^d} d{\bf v} ~~ \frac{\partial}{\partial b^i}\exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) \\ {} &= \int_{{\bf R}^d} d{\bf v} ~~ \exp({\scriptstyle\frac{ 1}{ 2}}{\bf v}^tA~{\bf v} + {\bf b}^t{\bf v}) v^i \end{aligned} \]

So the 1-point function \(v^i\) is given by \[ \langle v^i \rangle = \frac{1}{Z_0} \frac{\partial Z_{\bf b}}{\partial b^i}\vert _{{\bf b} =0} = \frac{\partial}{\partial b^i} \exp({\scriptstyle\frac{1}{2}}{\bf b}^tA^{-1}{\bf b})_{\vert _{{\bf b} =0}} \]

Similarly the m-point function \(\langle v^{i_1}\dots v^{i_m}\rangle\) is given by

\[ \begin{aligned} \langle v^{i_1}, \dots, v^{i_m}\rangle =& \frac{1}{Z_0} (\frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial b^{i_m}}Z_{\bf b})_{\textstyle \vert _{{\bf b} =0}}\\ {}=& \frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial b^{i_m}} \exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})_{\textstyle \vert _{{\bf b} =0}} \end{aligned} \]


Wick's Theorem

Calculating high-order derivatives of a function like \(\exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})\) can be very messy. A useful theorem reduces the calculation to combinatorics.

Wick's theorem

\[\displaystyle \frac{\partial}{\partial b^{i_1}}\cdots \frac{\partial}{\partial b^{i_m}}\exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})_{\vert _{{\bf b} =0}}= A^{-1}_{\textstyle i_{p_1},i_{p_2}} \cdots A^{-1}_{\textstyle i_{p_{m-1}},i_{p_m}},\]

where the sum is taken over all pairings \((i_{p_1},i_{p_2}), \dots, (i_{p_{m-1}},i_{p_m})\) of \(i_1,\cdots, i_m\)

Wick's theorem is proved (a careful counting argument) in texts on quantum field theory. The most detailed explanation is in S. S. Schweber, An Introduction to Relativistic Quantum Field Theory, Evanston, IL, Row, Peterson 1961.


examples

Let us calculate a couple of examples.

To begin, it is useful to write \(\exp(\frac{1}{2}{\bf b}^tA^{-1}{\bf b})\) with \({\bf b}^tA^{-1}{\bf b}=\sum A_{i,j}^{-1}b^ib^j\) (the sums running from 1 to \(d\)) using the series expansion \[ \exp x=1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots \] The typical term will be \((1/n!)(1/2^n)(\sum A^{-1}_{i,j}b^ib^j)^n\) . This term is a homogeneous polynomial in the bi of degree 2n

Differentiating k times a homogeneous polynomial of degree 2n and evaluating at zero will give zero unless k = 2n. So the job is to analyze the result of 2n differentiations on \((1/n!)(1/2^n)(\sum A^{-1}_{i,j}b^ib^j)^n\).

The differentiation carried out most frequently in these calculations is \[\displaystyle \frac{\partial}{\partial b^{k}}(\frac{1}{2}\sum_{i,j=1}^d A^{-1}_{i,j}b^ib^j) = \sum_{i=1}^d A^{-1}_{i,k}b^i,\]


where we use the symmetry of the matrix \(A^{-1}\), a direct consequence of the symmetry of \(A\).

In what follows \(\frac{\partial}{\partial b^{i}}\) will be abbreviated as \(\partial_i\) .


n=1

\[ \partial_2 \partial_1(\frac{1}{2}\sum A^{-1}_{i,j}b^ib^j) = A^{-1}_{1,2} \] using the symmetry of the matrix \(A^{-1}\). The same calculation shows that \[ \partial_1 \partial_1(\frac{1}{2}\sum A^{-1}_{i,j}b^ib^j) = A^{-1}_{1,1} \] Note that (1,2) and (2,1) count as the same pairing.

n=2

\[ \begin{aligned} \partial_4\partial_3\partial_2\partial_1(1/2!)(1/2^2)(\sum A^{-1}_{i,j}b^ib^j)^2 =& \partial_4\partial_3\partial_2 (1/2)(\sum A^{-1}_{i,j}b^ib^j)( \sum A^{-1}_{1,j}b^j) \\ {}=& [(\sum A^{-1}_{2,j}b^j)( \sum A^{-1}_{1,j}b^j) +(1/2)(\sum A^{-1}_{i,j}b^ib^j)A^{-1}_{1,2}] \\ {}=& \partial_4[A^{-1}_{2,3}( \sum A^{-1}_{1,j}b^j)+(\sum A^{-1}_{2,j}b^j)A^{-1}_{1,3} +(\sum A^{-1}_{3,j}b^j)A^{-1}_{1,2}] \\ {}=& A^{-1}_{2,3}A^{-1}_{1,4} + A^{-1}_{2,4}A^{-1}_{1,3} + A^{-1}_{3,4}A^{-1}_{1,2} \end{aligned} \]

Similarly: \[ \begin{aligned} \partial_4\partial_3\partial_1\partial_1~~{\rm gives~~}2A^{-1}_{1,4}A^{-1}_{1,3} + A^{-1}_{3,4}A^{-1}_{1,1}\\ \partial_4\partial_1\partial_1\partial_1~~{\rm gives~~} 3A^{-1}_{1,4}A^{-1}_{1,1} \\ \partial_4\partial_4\partial_1\partial_1~~{\rm gives~~} 2 A^{-1}_{1,4}A^{-1}_{1,4} + A^{-1}_{4,4}A^{-1}_{1,1}\\ \partial_1\partial_1\partial_1\partial_1~~{\rm gives~~} 3 A^{-1}_{1,1}A^{-1}_{1,1} \\ \end{aligned} \]


The first appearance of graphs

In the last section we calculated some 2 and 4-point functions: \[\langle v^1,v^2 \rangle=A^{-1}_{1,2}\] \[\langle v^1,v^1 \rangle=A^{-1}_{1,1}\] \[\langle v^1,v^2,v^3,v^4 \rangle=A^{-1}_{2,3}A^{-1}_{1,4}+A^{-1}_{2,4}A^{-1}_{1,3}+A^{-1}_{3,4}A^{-1}_{1,2}\] \[\langle v^1,v^1,v^3,v^4 \rangle=2A^{-1}_{1,4}A^{-1}_{1,3}+A^{-1}_{3,4}A^{-1}_{1,1}\] \[\langle v^1,v^1,v^1,v^4 \rangle=3A^{-1}_{1,4}A^{-1}_{1,1}\] \[\langle v^1,v^1,v^4,v^4 \rangle=2A^{-1}_{1,4}A^{-1}_{1,4}+A^{-1}_{4,4}A^{-1}_{1,1}\] \[\langle v^1,v^1,v^1,v^1 \rangle=3A^{-1}_{1,1}A^{-1}_{1,1}\]

It is convenient to represent each of products appearing on the right as a graph, where the vertices represent the indices of the coordinates \(v_i\) appearing in the m-point function, and each \[A^{-1}_{i,j}\] becomes an edge from vertex i to vertex j. Here are the graphs corresponding to the terms in the 4-point functions above.


Calculations with a potential function, ``Feynman Rules

The integrals of interest in Physics have the form


which we rewrite using the series expansion for the exponential as



If U is a polynomial in the coordinate functions v1, ...vd, then each term in the sum of integrals is a sum of m-point functions, and can be evaluated by our method, which can be written symbolically as:



Example: This example is formally like the `` theory. We take and analyze



using the abbreviation = as before.

Let us compute the terms of degree 2 in .

These terms will involve 6 derivatives; their sum is:



By Wick's Theorem we can rewrite this sum as



where the inside sum is taken over all pairings (i1,i2),(i3,i4)(i5i6) of i, j, k, i', j', k'.

These pairings can also be represented by graphs, very much in the same way that we used for m-point functions: there will be one trivalent vertex for each u factor, and one edge for each A-1. In this case there will be exactly two distinct graphs, according as the number of (unprimed, primed) index pairs is 1 or 3.

The ``dumbbell and the ``thetaare the two 3-valent 2-vertex graphs.

Summing over all possible labellings of these graphs will give some duplication, since each graph has symmetries that make different labellings correspond to the same pairing.


All eight of these labelings correspond to the same product: u123 u456 A-113 A-125 A-146.
All six of these labelings, and their six left-right mirror images, correspond to the same product: u123 u456 A-114 A-125 A-136.


The ``dumbbell graph has an automorphism (symmetry) group of order eight, whereas the ``theta graph has an automorphism group of order twelve.

Keeping this in mind, we may rewrite the coefficient of as:



where the sum is taken over the set of the topologically distinct trivalent graphs with two vertices (in this case, 2), the products are taken over the set of all vertices v (here there are 2) and the set of all edges e (here there are 3) respectively, and |AutG| is the number of automorphisms of the graph G.

In general, the ``Feynman rules for computing the coefficient of in the expansion of ZU are stated in exactly this way, except that the sum is over trivalent graphs with 2n vertices (and 3n edges).


7. Correlation functions

The way path integrals are used in quantum field theory is, very roughly speaking, that the probability amplitude of a process going from point v1 to point v2 is an integral over all possible ways of getting from v1 to v2. In our finite-dimensional model, each of these ``ways is represented by a point v in Rn and the probability measure assigned to that way is . The integral is what we called before a 2-point function


and what we will now call a correlation function.

We continue with the example of the cubic potential

.

By our previous calculations,


In terms of Wick's Theorem and our graph interpretation of pairings, this becomes:



where now the sum is over all graphs G with two single-valent vertices (the ends) labeled 1 and 2, and n 3-valent vertices.


This graph occurs in the calculation of the coefficient of  in <v1,v2>.

The k-point correlation functions are similarly defined and calculated. Here is where we begin to see the usual ``Feynman diagrams.


This graph occurs in the calculation of the coefficient of in <v1,v2,v3,v4>.



computational resource


books


expositions

articles