"Restricted sine-Gordon theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 12개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
 
* [[quantum sine-Gordon field theory]]
 
* [[quantum sine-Gordon field theory]]
 
* RSG[p/q] is integrable perturbation of [[minimal models]] M(p,q)
 
* RSG[p/q] is integrable perturbation of [[minimal models]] M(p,q)
  
 
+
  
 
+
  
<h5>history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
 
+
  
<h5>related items</h5>
+
==related items==
  
 
* [[massive integrable perturbations of CFT and quasi-particles]]
 
* [[massive integrable perturbations of CFT and quasi-particles]]
  
 
+
  
 
+
==expositions==
 +
* [http://arxiv.org/abs/hep-th/9111022 Restricted Sine-Gordon Theory in the Repulsive Regime as Perturbed Minimal CFTs]
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
  
* http://en.wikipedia.org/wiki/
+
* http://www.scholarpedia.org/
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
+
==articles==
 +
* Bazhanov, Vladimir V. 2011. “Chiral Potts Model and the Discrete Sine-Gordon Model at Roots of Unity.” In Exploring New Structures and Natural Constructions in Mathematical Physics, 61:91–123. Adv. Stud. Pure Math. Tokyo: Math. Soc. Japan. http://eprintweb.org/S/article/arxiv/0809.2351
 +
* Bazhanov, V., A. Bobenko, and N. Reshetikhin. 1996. “Quantum Discrete Sine-Gordon Model at Roots of <math>1</math>: Integrable Quantum System on the Integrable Classical Background.” Communications in Mathematical Physics 175 (2): 377–400.
  
 
+
* [http://dx.doi.org/10.1016/0370-2693%2891%2990095-8 Thermodynamic Bethe ansatz equations for perturbed minimal conformal field theories]
 
 
<h5>books</h5>
 
 
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
 
 
<h5>expositions</h5>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
 
* [http://dx.doi.org/10.1016/0370-2693%2891%2990095-8 Thermodynamic Bethe ansatz equations for perturbed minimal conformal field theories]<br>
 
 
** Changrim Ahn, Soonkeon Nam, Physics Letters B Volume 271, Issues 3-4, 21 November 1991, Pages 329-336
 
** Changrim Ahn, Soonkeon Nam, Physics Letters B Volume 271, Issues 3-4, 21 November 1991, Pages 329-336
* [http://dx.doi.org/10.1016/0370-2693%2890%2990901-H The fractional supersymmetric sine-Gordon models]<br>
+
* [http://dx.doi.org/10.1016/0370-2693%2890%2990901-H The fractional supersymmetric sine-Gordon models]
 
** Denis Bernard and André Leclair, 1990
 
** Denis Bernard and André Leclair, 1990
* [http://dx.doi.org/10.1016/0550-3213%2890%2990466-Q Residual quantum symmetries of the Restricted sine-Gordon theories]<br>
+
* [http://dx.doi.org/10.1016/0550-3213%2890%2990466-Q Residual quantum symmetries of the Restricted sine-Gordon theories]
 
** Denis Bernard and André Leclair, 1990
 
** Denis Bernard and André Leclair, 1990
* [http://dx.doi.org/10.1016/0370-2693%2890%2991964-D Sine-Gordon theory at rational values of the coupling constant and minimal conformal models]<br>
+
* [http://dx.doi.org/10.1016/0370-2693%2890%2991964-D Sine-Gordon theory at rational values of the coupling constant and minimal conformal models]
 
** Tohru Eguchi, Sung-Kil Yang 1990
 
** Tohru Eguchi, Sung-Kil Yang 1990
* [http://dx.doi.org/10.1016/0370-2693%2889%2991463-9 Deformations of conformal field theories and soliton equations]<br>
+
* [http://dx.doi.org/10.1016/0370-2693%2889%2991463-9 Deformations of conformal field theories and soliton equations]
 
** Tohru Eguchi, Sung-Kil Yang 1989
 
** Tohru Eguchi, Sung-Kil Yang 1989
* [http://dx.doi.org/10.1016/0370-2693%2889%2991661-4 Restricted sine-Gordon theory and the minimal conformal series]<br>
+
* [http://dx.doi.org/10.1016/0370-2693%2889%2991661-4 Restricted sine-Gordon theory and the minimal conformal series]
**  André Leclair, 1989<br>
+
**  André Leclair, 1989
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
 
 
<h5>experts on the field</h5>
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
 
 
 
<h5>links</h5>
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
[[분류:개인노트]]
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
[[분류:integrable systems]]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
[[분류:math and physics]]
* http://functions.wolfram.com/
+
[[분류:migrate]]

2020년 11월 16일 (월) 10:02 기준 최신판

introduction



history



related items


expositions



articles

  • Bazhanov, Vladimir V. 2011. “Chiral Potts Model and the Discrete Sine-Gordon Model at Roots of Unity.” In Exploring New Structures and Natural Constructions in Mathematical Physics, 61:91–123. Adv. Stud. Pure Math. Tokyo: Math. Soc. Japan. http://eprintweb.org/S/article/arxiv/0809.2351
  • Bazhanov, V., A. Bobenko, and N. Reshetikhin. 1996. “Quantum Discrete Sine-Gordon Model at Roots of \(1\): Integrable Quantum System on the Integrable Classical Background.” Communications in Mathematical Physics 175 (2): 377–400.