"Restricted sine-Gordon theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(같은 사용자의 중간 판 하나는 보이지 않습니다)
30번째 줄: 30번째 줄:
 
==articles==
 
==articles==
 
* Bazhanov, Vladimir V. 2011. “Chiral Potts Model and the Discrete Sine-Gordon Model at Roots of Unity.” In Exploring New Structures and Natural Constructions in Mathematical Physics, 61:91–123. Adv. Stud. Pure Math. Tokyo: Math. Soc. Japan. http://eprintweb.org/S/article/arxiv/0809.2351
 
* Bazhanov, Vladimir V. 2011. “Chiral Potts Model and the Discrete Sine-Gordon Model at Roots of Unity.” In Exploring New Structures and Natural Constructions in Mathematical Physics, 61:91–123. Adv. Stud. Pure Math. Tokyo: Math. Soc. Japan. http://eprintweb.org/S/article/arxiv/0809.2351
* Bazhanov, V., A. Bobenko, and N. Reshetikhin. 1996. “Quantum Discrete Sine-Gordon Model at Roots of $1$: Integrable Quantum System on the Integrable Classical Background.” Communications in Mathematical Physics 175 (2): 377–400.
+
* Bazhanov, V., A. Bobenko, and N. Reshetikhin. 1996. “Quantum Discrete Sine-Gordon Model at Roots of <math>1</math>: Integrable Quantum System on the Integrable Classical Background.” Communications in Mathematical Physics 175 (2): 377–400.
  
 
* [http://dx.doi.org/10.1016/0370-2693%2891%2990095-8 Thermodynamic Bethe ansatz equations for perturbed minimal conformal field theories]
 
* [http://dx.doi.org/10.1016/0370-2693%2891%2990095-8 Thermodynamic Bethe ansatz equations for perturbed minimal conformal field theories]

2020년 11월 16일 (월) 10:02 기준 최신판

introduction



history



related items


expositions



articles

  • Bazhanov, Vladimir V. 2011. “Chiral Potts Model and the Discrete Sine-Gordon Model at Roots of Unity.” In Exploring New Structures and Natural Constructions in Mathematical Physics, 61:91–123. Adv. Stud. Pure Math. Tokyo: Math. Soc. Japan. http://eprintweb.org/S/article/arxiv/0809.2351
  • Bazhanov, V., A. Bobenko, and N. Reshetikhin. 1996. “Quantum Discrete Sine-Gordon Model at Roots of \(1\): Integrable Quantum System on the Integrable Classical Background.” Communications in Mathematical Physics 175 (2): 377–400.