"Jones-Ocneanu trace"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 3개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* linear functional on the Hecke algebra of type $A_n$
+
* linear functional on the Hecke algebra of type <math>A_n</math>
 
* Jones related a trace found by Ocneanu with [[HOMFLY polynomial]]
 
* Jones related a trace found by Ocneanu with [[HOMFLY polynomial]]
  
  
 
==construction==
 
==construction==
* let  $W=S_n$, the symmetric group on $n$ letters and $S$ the set of transpositions $s_i: = (i,i+1)$
+
* let  <math>W=S_n</math>, the symmetric group on <math>n</math> letters and <math>S</math> the set of transpositions <math>s_i: = (i,i+1)</math>
* Coxeter matrix  : $m_{ii}=1$ and $m_{i,i+1}=3$, 2 otherwise
+
* Coxeter matrix  : <math>m_{ii}=1</math> and <math>m_{i,i+1}=3</math>, 2 otherwise
  
Let $A$ be a commutative ring with 1 and fix two invertible elements $u, v \in A$.
+
Let <math>A</math> be a commutative ring with 1 and fix two invertible elements <math>u, v \in A</math>.
  
For $n\geq 1$, consider $H_A(S_n)$ associated with $S_n$ over the ring $A$ and with parameters $a_{s_i} = u$, $b_{s_i} = v$ for $1\leq i \leq n - 1$.
+
For <math>n\geq 1</math>, consider <math>H_A(S_n)</math> associated with <math>S_n</math> over the ring <math>A</math> and with parameters <math>a_{s_i} = u</math>, <math>b_{s_i} = v</math> for <math>1\leq i \leq n - 1</math>.
  
For simplicity, let $H_n: = H_A(S_n)$.
+
For simplicity, let <math>H_n: = H_A(S_n)</math>.
  
Regard $H_n$ as a subalgebra of $H_{n+1}$.
+
Regard <math>H_n</math> as a subalgebra of <math>H_{n+1}</math>.
  
 
;thm (Jones, Ocneanu)
 
;thm (Jones, Ocneanu)
There is a unique family $\{\tau_n\}_{n\geq1}$ of $A$-linear maps $\tau_n : H_n \to A$ s.t. the following conditions hold :
+
There is a unique family <math>\{\tau_n\}_{n\geq1}</math> of <math>A</math>-linear maps <math>\tau_n : H_n \to A</math> s.t. the following conditions hold :
$$
+
:<math>
 
\begin{array}{ll}
 
\begin{array}{ll}
 
(M1) & \tau_1(T_e)=1 \\
 
(M1) & \tau_1(T_e)=1 \\
(M2) & \tau_{n+1}(hT_{s_n}^{\pm})=\tau_{n}(h) \quad& \text{for $n\geq1$ and $h\in H_n$} \\
+
(M2) & \tau_{n+1}(hT_{s_n}^{\pm})=\tau_{n}(h) \quad& \text{for </math>n\geq1<math> and </math>h\in H_n<math>} \\
(M3) & \tau_n(hh')=\tau_{n}(h'h) & \text{for $n\geq1$ and $h,h'\in H_n$}
+
(M3) & \tau_n(hh')=\tau_{n}(h'h) & \text{for </math>n\geq1<math> and </math>h,h'\in H_n<math>}
 
\end{array}
 
\end{array}
$$
+
</math>
Moreover, $\tau_{n+1}(h)=v^{-1}(1-u)\tau_{n}(h)$ for all $n\geq 1$ and $h\in H_n$.
+
Moreover, <math>\tau_{n+1}(h)=v^{-1}(1-u)\tau_{n}(h)</math> for all <math>n\geq 1</math> and <math>h\in H_n</math>.
  
 
;proof
 
;proof
Let us define $\tau_n$ recursively as follows.  
+
Let us define <math>\tau_n</math> recursively as follows.  
  
For $n=1$, set $\tau_1(T_e)=1$.  
+
For <math>n=1</math>, set <math>\tau_1(T_e)=1</math>.  
  
Let $n\geq 1$ and assume that $\tau_n$ has been defined. Then we set
+
Let <math>n\geq 1</math> and assume that <math>\tau_n</math> has been defined. Then we set
 
\begin{equation}\label{star}
 
\begin{equation}\label{star}
 
\tau_{n+1}(a+b T_{s_n}c):=\frac{1-u}{v}\tau_n(a)+\tau_n(bc), \, a,b,c\in H_n
 
\tau_{n+1}(a+b T_{s_n}c):=\frac{1-u}{v}\tau_n(a)+\tau_n(bc), \, a,b,c\in H_n
 
\end{equation}
 
\end{equation}
  
need to check that $\tau_{n+1}$ is well-defined and satisfies M2, M3.
+
need to check that <math>\tau_{n+1}</math> is well-defined and satisfies M2, M3.
  
we need the isomorphism of $A$-modules for $n\geq 2$:
+
we need the isomorphism of <math>A</math>-modules for <math>n\geq 2</math>:
  
$$
+
:<math>
 
\psi_n: H_n\oplus (H_n\otimes_{H_{n-1}} H_n) \to H_{n+1},\, a\oplus (b\otimes c)\mapsto a+bT_{s_n}c
 
\psi_n: H_n\oplus (H_n\otimes_{H_{n-1}} H_n) \to H_{n+1},\, a\oplus (b\otimes c)\mapsto a+bT_{s_n}c
$$
+
</math>
 
 
  
* $v^{-1}$ is used when we define $\tau_n$
+
* <math>v^{-1}</math> is used when we define <math>\tau_n</math>
* note that to have $T_{s_n}^{-1}$, we need $u^{-1}$.
+
* note that to have <math>T_{s_n}^{-1}</math>, we need <math>u^{-1}</math>.
  
  
 
[[분류:Knot theory]]
 
[[분류:Knot theory]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 11:03 기준 최신판

introduction

  • linear functional on the Hecke algebra of type \(A_n\)
  • Jones related a trace found by Ocneanu with HOMFLY polynomial


construction

  • let \(W=S_n\), the symmetric group on \(n\) letters and \(S\) the set of transpositions \(s_i: = (i,i+1)\)
  • Coxeter matrix \[m_{ii}=1\] and \(m_{i,i+1}=3\), 2 otherwise

Let \(A\) be a commutative ring with 1 and fix two invertible elements \(u, v \in A\).

For \(n\geq 1\), consider \(H_A(S_n)\) associated with \(S_n\) over the ring \(A\) and with parameters \(a_{s_i} = u\), \(b_{s_i} = v\) for \(1\leq i \leq n - 1\).

For simplicity, let \(H_n: = H_A(S_n)\).

Regard \(H_n\) as a subalgebra of \(H_{n+1}\).

thm (Jones, Ocneanu)

There is a unique family \(\{\tau_n\}_{n\geq1}\) of \(A\)-linear maps \(\tau_n : H_n \to A\) s.t. the following conditions hold : \[ \begin{array}{ll} (M1) & \tau_1(T_e)=1 \\ (M2) & \tau_{n+1}(hT_{s_n}^{\pm})=\tau_{n}(h) \quad& \text{for \]n\geq1\( and \)h\in H_n\(} \\ (M3) & \tau_n(hh')=\tau_{n}(h'h) & \text{for \)n\geq1\( and \)h,h'\in H_n\(} \end{array} \) Moreover, \(\tau_{n+1}(h)=v^{-1}(1-u)\tau_{n}(h)\) for all \(n\geq 1\) and \(h\in H_n\).

proof

Let us define \(\tau_n\) recursively as follows.

For \(n=1\), set \(\tau_1(T_e)=1\).

Let \(n\geq 1\) and assume that \(\tau_n\) has been defined. Then we set \begin{equation}\label{star} \tau_{n+1}(a+b T_{s_n}c):=\frac{1-u}{v}\tau_n(a)+\tau_n(bc), \, a,b,c\in H_n \end{equation}

need to check that \(\tau_{n+1}\) is well-defined and satisfies M2, M3.

we need the isomorphism of \(A\)-modules for \(n\geq 2\):

\[ \psi_n: H_n\oplus (H_n\otimes_{H_{n-1}} H_n) \to H_{n+1},\, a\oplus (b\otimes c)\mapsto a+bT_{s_n}c \] ■

  • \(v^{-1}\) is used when we define \(\tau_n\)
  • note that to have \(T_{s_n}^{-1}\), we need \(u^{-1}\).