"Zeta integral"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 4개는 보이지 않습니다)
4번째 줄: 4번째 줄:
  
 
==local zeta integral==
 
==local zeta integral==
* quasicharacter on $F_v^{\times}$ are of the form $\omega_s(x)=\omega(x)|x|^s$ where $\omega$ is unitary
+
* quasicharacter on <math>F_v^{\times}</math> are of the form <math>\omega_s(x)=\omega(x)|x|^s</math> where <math>\omega</math> is unitary
* $\omega$ : unitary, $s\in \mathbb{C}$
+
* <math>\omega</math> : unitary, <math>s\in \mathbb{C}</math>
* the following converges for $\Re(s)>0$
+
* the following converges for <math>\Re(s)>0</math>
$$
+
:<math>
 
\zeta(f,\omega,s)=\int_{F_v^{\times}}f(x)\omega(x)|x|^s\, d^{\times}x
 
\zeta(f,\omega,s)=\int_{F_v^{\times}}f(x)\omega(x)|x|^s\, d^{\times}x
$$
+
</math>
* analytic continuation of $Z(f,\omega,s)$
+
* analytic continuation of <math>Z(f,\omega,s)</math>
 
* functional equation
 
* functional equation
  
 
==global zeta integral==
 
==global zeta integral==
 
===Riemann zeta function===
 
===Riemann zeta function===
* $f\in \mathcal{S}(\mathbb{A})$
+
* <math>f\in \mathcal{S}(\mathbb{A})</math>
 
* define
 
* define
$$
+
:<math>
 
\zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x
 
\zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x
$$
+
</math>
 
;thm
 
;thm
The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an meromorphic function on $\mathbb{C}$.  
+
The integral converges locally uniformly for <math>\Re(s)>1</math> and so it defines a holomorphic function in that range, which extends to an meromorphic function on <math>\mathbb{C}</math>.  
This function is holomorphic away from the points $s=0,1$, where it has at most simple poles of residue $-f(0)$ and $\hat{f}(0)$, respectively. The zeta integral satisfies the functional equation
+
This function is holomorphic away from the points <math>s=0,1</math>, where it has at most simple poles of residue <math>-f(0)</math> and <math>\hat{f}(0)</math>, respectively. The zeta integral satisfies the functional equation
 
One has
 
One has
$$
+
:<math>
 
\zeta(f,s)=\zeta(\widehat{f},1-s)
 
\zeta(f,s)=\zeta(\widehat{f},1-s)
$$
+
</math>
  
  
 
===Dirichlet L-functions===
 
===Dirichlet L-functions===
* $f\in \mathcal{S}(\mathbb{A})$
+
* <math>f\in \mathcal{S}(\mathbb{A})</math>
* $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
+
* <math>\chi</math> : character of <math>\mathbb{A}^{\times}/\mathbb{Q}^{\times}</math> with finite image
 
* define
 
* define
$$
+
:<math>
 
\zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x
 
\zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x
$$
+
</math>
 
;thm
 
;thm
Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has
+
Let <math>\chi\neq 1</math>. The integral converges locally uniformly for <math>\Re(s)>1</math> and so it defines a holomorphic function in that range, which extends to an entire function on <math>\mathbb{C}</math>. One has
$$
+
:<math>
 
\zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s)
 
\zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s)
$$
+
</math>
  
 
==articles==
 
==articles==
 +
* http://arxiv.org/abs/1509.04835
 
* Li, Wen-Wei. “Zeta Integrals, Schwartz Spaces and Local Functional Equations.” arXiv:1508.05594 [math], August 23, 2015. http://arxiv.org/abs/1508.05594.
 
* Li, Wen-Wei. “Zeta Integrals, Schwartz Spaces and Local Functional Equations.” arXiv:1508.05594 [math], August 23, 2015. http://arxiv.org/abs/1508.05594.
  
  
 
[[분류:L-functions and L-values]]
 
[[분류:L-functions and L-values]]
 +
[[분류:migrate]]

2020년 11월 16일 (월) 11:05 기준 최신판

introduction

  • many zeta integrals in the theory of automorphic forms can be produced or explained by appropriate choices of a Schwartz space of test functions on a spherical homogeneous space, which are in turn dictated by the geometry of affine spherical embeddings


local zeta integral

  • quasicharacter on \(F_v^{\times}\) are of the form \(\omega_s(x)=\omega(x)|x|^s\) where \(\omega\) is unitary
  • \(\omega\) : unitary, \(s\in \mathbb{C}\)
  • the following converges for \(\Re(s)>0\)

\[ \zeta(f,\omega,s)=\int_{F_v^{\times}}f(x)\omega(x)|x|^s\, d^{\times}x \]

  • analytic continuation of \(Z(f,\omega,s)\)
  • functional equation

global zeta integral

Riemann zeta function

  • \(f\in \mathcal{S}(\mathbb{A})\)
  • define

\[ \zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x \]

thm

The integral converges locally uniformly for \(\Re(s)>1\) and so it defines a holomorphic function in that range, which extends to an meromorphic function on \(\mathbb{C}\). This function is holomorphic away from the points \(s=0,1\), where it has at most simple poles of residue \(-f(0)\) and \(\hat{f}(0)\), respectively. The zeta integral satisfies the functional equation One has \[ \zeta(f,s)=\zeta(\widehat{f},1-s) \]


Dirichlet L-functions

  • \(f\in \mathcal{S}(\mathbb{A})\)
  • \(\chi\) : character of \(\mathbb{A}^{\times}/\mathbb{Q}^{\times}\) with finite image
  • define

\[ \zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x \]

thm

Let \(\chi\neq 1\). The integral converges locally uniformly for \(\Re(s)>1\) and so it defines a holomorphic function in that range, which extends to an entire function on \(\mathbb{C}\). One has \[ \zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s) \]

articles