imported>Pythagoras0 |
|
(사용자 2명의 중간 판 13개는 보이지 않습니다) |
1번째 줄: |
1번째 줄: |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction==
| + | ==introduction== |
| + | * {{수학노트|url=로저스-라마누잔_항등식}} |
| + | * {{수학노트|url=로저스-라마누잔_연분수}} |
| + | * {{수학노트|url=로저스_다이로그_함수_(Rogers'_dilogarithm)}} |
| + | :<math>L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math> |
| + | :<math>L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}</math> |
| + | :<math>L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}</math> |
| | | |
− | * [http://pythagoras0.springnote.com/pages/3004578 로저스-라마누잔 연분수와 항등식]<br>
| |
− | * [http://pythagoras0.springnote.com/pages/4855791 로저스 dilogarithm]<br><math>L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math><br><math>L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}</math><br><math>L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}</math><br>
| |
| | | |
− |
| + | * <math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때, |
| + | :<math>H(q)=\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)</math> |
| + | :<math>G(q)=\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)</math> |
| + | * '''[McIntosh1995]''' 참조 |
| + | * 이로부터 다음을 알 수 있다<math>t\to 0</math> 일 때, <math>q=e^{-t}\to 1</math> 으로 두면 |
| + | :<math>\frac{H(1)}{G(1)} = \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots</math> |
| + | :<math>r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} = \cfrac{q^{\frac{1}{5}}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}</math> |
| + | :<math>r(0)= \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots</math> |
| + | * singular moduli |
| + | :<math> |
| + | r(i)=\cfrac{e^{\frac{-2\pi}{5}}}{1+\cfrac{e^{-2\pi}}{1+\cfrac{e^{-4\pi}}{1+\cfrac{e^{-6\pi}}{1+\cdots}}}} |
| + | </math> |
| + | :<math> |
| + | r(i)={\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}} |
| + | </math> |
| + | * j-invariant |
| + | :<math> |
| + | j(\tau)=-\frac{(r(\tau)^{20}-228r(\tau)^{15}+494r(\tau)^{10}+228r(\tau)^{5}+1)^3}{r(\tau)^{5}(r(\tau)^{10}+11r(\tau)^{5}-1)^5} |
| + | </math> |
| | | |
− | * <math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,<br><math>H(q)=\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)</math><br><math>G(q)=\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)</math><br>
| + | |
− | * '''[McIntosh1995]''' 참조<br>
| |
− | * 이로부터 다음을 알 수 있다<br><math>t\to 0</math> 일 때, <math>q=e^{-t}\to 1</math> 으로 두면<br><math>\frac{H(1)}{G(1)} = \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots</math><br>
| |
| | | |
− |
| + | ==related items== |
| | | |
− |
| + | * [[asymptotic analysis of basic hypergeometric series]] |
| | | |
− | <math>r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} = \cfrac{q^{\frac{1}{5}}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}</math>
| + | |
| | | |
− | <math>r(0)= \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots</math>
| |
| | | |
− |
| |
| | | |
− |
| + | [[분류:개인노트]] |
− | | + | [[분류:talks and lecture notes]] |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">history==
| + | [[분류:migrate]] |
− | | |
− | * http://www.google.com/search?hl=en&tbs=tl:1&q=
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">related items==
| |
− | | |
− | * [[asymptotic analysis of basic hypergeometric series]]<br>
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">encyclopedia==
| |
− | | |
− | * http://en.wikipedia.org/wiki/
| |
− | * http://www.scholarpedia.org/
| |
− | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">books==
| |
− | | |
− |
| |
− | | |
− | * [[2010년 books and articles]]<br>
| |
− | * http://gigapedia.info/1/
| |
− | * http://gigapedia.info/1/
| |
− | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
| |
− | | |
− | [[4909919|4909919]]
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles==
| |
− | | |
− |
| |
− | | |
− | * http://www.ams.org/mathscinet
| |
− | * [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/
| |
− | * [http://arxiv.org/ ]http://arxiv.org/
| |
− | * http://pythagoras0.springnote.com/
| |
− | * http://math.berkeley.edu/~reb/papers/index.html
| |
− | * http://dx.doi.org/
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">question and answers(Math Overflow)==
| |
− | | |
− | * http://mathoverflow.net/search?q=
| |
− | * http://mathoverflow.net/search?q=
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">blogs==
| |
− | | |
− | * 구글 블로그 검색<br>
| |
− | ** http://blogsearch.google.com/blogsearch?q=
| |
− | ** http://blogsearch.google.com/blogsearch?q=
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">experts on the field==
| |
− | | |
− | * http://arxiv.org/
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">links==
| |
− | | |
− | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
| |
− | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
| |
− | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
| |
− | * http://functions.wolfram.com/
| |
− | *
| |