"두자연수가 서로소일 확률과 리만제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 8개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>개요</h5>
+
==개요==
  
 
+
  
*  두 자연수를 랜덤하게 뽑았을 때, 둘이 서로소일 확률<br>
+
*  두 자연수를 랜덤하게 뽑았을 때, 둘이 서로소일 확률
*  답은 리만제타함수의 값 <math>\zeta(2)</math> 와 관련있음.<br>
+
*  답은 리만제타함수의 <math>\zeta(2)</math> 관련있음.
  
 
+
  
 
+
  
두 자연수가 소수 p를 공약수로 가질 확률은 <math>\frac{1}{p^2}</math>가 된다.
+
두 자연수가 소수 p를 공약수로 가질 확률은 <math>\frac{1}{p^2}</math>가 된다.
  
 
따라서 두 자연수가 서로소일 확률은, 모든 소수 p에 대하여 p를 공약수로 갖지 않을 확률을 곱한 것이 된다. 즉,
 
따라서 두 자연수가 서로소일 확률은, 모든 소수 p에 대하여 p를 공약수로 갖지 않을 확률을 곱한 것이 된다. 즉,
28번째 줄: 28번째 줄:
 
두 자연수를 랜덤하게 뽑았을 때,둘이 서로소일 확률은
 
두 자연수를 랜덤하게 뽑았을 때,둘이 서로소일 확률은
  
<math>\frac{6}{\pi^2}\approx0.6079271\cdots</math><br> 이 문제 어디에 도대체 원이 숨어있단 말인가?
+
<math>\frac{6}{\pi^2}\approx0.6079271\cdots</math> 이 문제 어디에 도대체 원이 숨어있단 말인가?
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
+
==관련된 항목들==
  
* [[패리 수열(Farey series)|Farey series]]<br>
+
* [[패리 수열(Farey series)|Farey series]]
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br>
+
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
+
  
* 도서내검색<br>
+
   
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
+
==블로그==
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">참고할만한 자료</h5>
+
* [http://bomber0.byus.net/index.php/2008/07/28/698 오늘의 퀴즈 : Farey series의 크기]
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
 
 
 
* [http://bomber0.byus.net/index.php/2008/07/28/698 오늘의 퀴즈 : Farey series의 크기]<br>
 
 
** 피타고라스의 창, 2008-7-28
 
** 피타고라스의 창, 2008-7-28
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
[[분류:원주율]]
* 네이버 블로그 검색 http://cafeblog.search.naver.com/search.naver?where=post&sm=tab_jum&query=
+
[[분류:리만 제타 함수]]
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
* 스프링노트 http://www.springnote.com/search?stype=all&q=
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이미지 검색</h5>
 
 
 
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
 
* http://images.google.com/images?q=
 
* [http://www.artchive.com/ http://www.artchive.com]
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">동영상</h5>
 
 
 
* http://www.youtube.com/results?search_type=&search_query=
 
*
 

2020년 12월 28일 (월) 02:13 기준 최신판

개요

  • 두 자연수를 랜덤하게 뽑았을 때, 둘이 서로소일 확률
  • 답은 리만제타함수의 값 \(\zeta(2)\) 와 관련있음.



두 자연수가 소수 p를 공약수로 가질 확률은 \(\frac{1}{p^2}\)가 된다.

따라서 두 자연수가 서로소일 확률은, 모든 소수 p에 대하여 p를 공약수로 갖지 않을 확률을 곱한 것이 된다. 즉,

\(\prod_{p\text{:prime}}1-\frac{1}{p^2}=\prod_{p\text{:prime}}1-p^{-2}\)

그런데 이 녀석, 지난 글에 등장한 공식과 좀 닮아있지 않은가?

\(\zeta(s)=\prod_{p\text{:prime}}\frac{1}{1-p^{-s}}\)

이를 활용하면,

\(\prod_{p\text{:prime}}1-\frac{1}{p^2}=\frac{1}{\zeta(2)}\)

그래서 답이 나왔다.

두 자연수를 랜덤하게 뽑았을 때,둘이 서로소일 확률은

\(\frac{6}{\pi^2}\approx0.6079271\cdots\) 이 문제 어디에 도대체 원이 숨어있단 말인가?



관련된 항목들




블로그