"슈바르츠 미분(Schwarzian derivative)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
10번째 줄: 10번째 줄:
 
* <math>\{f,z\}:=(Sf)(z)</math>
 
* <math>\{f,z\}:=(Sf)(z)</math>
  
 
+
  
 
+
  
 
==뫼비우스 변환==
 
==뫼비우스 변환==
19번째 줄: 19번째 줄:
 
* <math>\{f,z\}=0</math> 이면, <math>f(z)=\frac{az+b}{cz+d}</math>
 
* <math>\{f,z\}=0</math> 이면, <math>f(z)=\frac{az+b}{cz+d}</math>
  
 
+
  
 
+
  
 
==이계 선형 미분방정식==
 
==이계 선형 미분방정식==
28번째 줄: 28번째 줄:
 
* <math>u_1(z), u_2(z)</math> 가 이 미분방정식의 일차독립인 두 해이면, <math>w(z)=\frac{u_1(z)}{u_2(z)}</math> 는 다음 미분방정식의 해이다:<math>\{w,z\}=2P(z)</math>
 
* <math>u_1(z), u_2(z)</math> 가 이 미분방정식의 일차독립인 두 해이면, <math>w(z)=\frac{u_1(z)}{u_2(z)}</math> 는 다음 미분방정식의 해이다:<math>\{w,z\}=2P(z)</math>
  
 
+
  
 
+
  
 
==슈바르츠 s-함수==
 
==슈바르츠 s-함수==
36번째 줄: 36번째 줄:
 
(정리)
 
(정리)
  
복소상반평면을 <math>\alpha\pi,\beta\pi,\gamma\pi</math> 를 세 각으로 갖는 삼각형으로 보내는 해석함수 <math>w=s(z)</math>는 다음 초기하미분방정식<math>z(1-z)y''+(c-(a+b+1)z)y'-aby = 0</math> 의 선형독립인 두 해, <math>y_1(z),y_2(z)</math> 의 비로 표현할 수 있다. 즉 <math>w=\frac{y_1(z)}{y_2(z)}</math> 이다.
+
복소상반평면을 <math>\alpha\pi,\beta\pi,\gamma\pi</math> 를 세 각으로 갖는 삼각형으로 보내는 해석함수 <math>w=s(z)</math>는 다음 초기하미분방정식<math>z(1-z)y''+(c-(a+b+1)z)y'-aby = 0</math> 의 선형독립인 두 해, <math>y_1(z),y_2(z)</math> 의 비로 표현할 수 있다. <math>w=\frac{y_1(z)}{y_2(z)}</math> 이다.
  
 
여기서 <math>\alpha =1-c,\beta =a-b,\gamma =-a-b+c</math>.
 
여기서 <math>\alpha =1-c,\beta =a-b,\gamma =-a-b+c</math>.
  
 
+
  
 
(증명)
 
(증명)
46번째 줄: 46번째 줄:
 
<math>P(z)=\frac{1}{4}\left(\frac{1-\alpha ^2}{z^2}+\frac{1-\gamma ^2}{(z-1)^2}+\frac{\alpha ^2+\gamma ^2-\beta ^2-1}{z(z-1)}\right)</math> 라 하자.
 
<math>P(z)=\frac{1}{4}\left(\frac{1-\alpha ^2}{z^2}+\frac{1-\gamma ^2}{(z-1)^2}+\frac{\alpha ^2+\gamma ^2-\beta ^2-1}{z(z-1)}\right)</math> 라 하자.
  
원하는 해석함수는 미분방정식 <math>\{w,z\}=2P(z)</math>의 해이다. 
+
원하는 해석함수는 미분방정식 <math>\{w,z\}=2P(z)</math>의 해이다.  
  
 
위에서 서술한대로
 
위에서 서술한대로
52번째 줄: 52번째 줄:
 
<math>u''(z)+P(z)u(z)=0</math>의 선형독립인 두 해 <math>u_1(z), u_2(z)</math>에 대하여, <math>w(z)=\frac{u_1(z)}{u_2(z)}</math> 로 표현할 수 있다.
 
<math>u''(z)+P(z)u(z)=0</math>의 선형독립인 두 해 <math>u_1(z), u_2(z)</math>에 대하여, <math>w(z)=\frac{u_1(z)}{u_2(z)}</math> 로 표현할 수 있다.
  
 
+
  
 
[[이계 선형 미분방정식]] 에서 얻은 결과에 따라, 미분방정식 <math>u''(z)+P(z)u(z)=0</math>를 [[초기하 미분방정식(Hypergeometric differential equations)]] 형태로 변형할 수 있다.
 
[[이계 선형 미분방정식]] 에서 얻은 결과에 따라, 미분방정식 <math>u''(z)+P(z)u(z)=0</math>를 [[초기하 미분방정식(Hypergeometric differential equations)]] 형태로 변형할 수 있다.
  
따라서 <math>z(1-z)y''+(c-(a+b+1)z)y'-aby = 0</math> 의 선형독립인 두 해, <math>y_1(z),y_2(z)</math>에 대하여, <math>w(z)=\frac{y_1(z)}{y_2(z)}</math>로 쓸 수 있다. 
+
따라서 <math>z(1-z)y''+(c-(a+b+1)z)y'-aby = 0</math> 의 선형독립인 두 해, <math>y_1(z),y_2(z)</math>에 대하여, <math>w(z)=\frac{y_1(z)}{y_2(z)}</math>로 쓸 수 있다.
  
 
+
  
 
+
  
* [[슈바르츠 삼각형 함수|슈바르츠 삼각형 함수 (s-함수)]]  에 응용된다
+
* [[슈바르츠 삼각형 함수|슈바르츠 삼각형 함수 (s-함수)]] 에 응용된다
  
 
+
  
 
+
  
 
==메모==
 
==메모==
75번째 줄: 75번째 줄:
 
* http://www.ams.org/notices/200901/tx090100034p.pdf
 
* http://www.ams.org/notices/200901/tx090100034p.pdf
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
  
 
+
  
 
+
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
87번째 줄: 87번째 줄:
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxeWVpa1QzQ0daOGc/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxeWVpa1QzQ0daOGc/edit
  
 
+
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
98번째 줄: 98번째 줄:
  
  
 
+
  
 
==관련논문==
 
==관련논문==
 
* Tamanoi, Hirotaka. “Higher Schwarzian Operators and Combinatorics of the Schwarzian Derivative.” Mathematische Annalen 305, no. 1 (1996): 127–151. doi:10.1007/BF01444214.
 
* Tamanoi, Hirotaka. “Higher Schwarzian Operators and Combinatorics of the Schwarzian Derivative.” Mathematische Annalen 305, no. 1 (1996): 127–151. doi:10.1007/BF01444214.

2020년 12월 28일 (월) 02:38 판

개요

  • 복소함수 f 에 대하여, 슈바르츠 미분을 다음과 같이 정의함

\[ \begin{aligned} (Sf)(z) &= \left({f''(z) \over f'(z)}\right)' - {1\over 2}\left({f''(z)\over f'(z)}\right)^2 \\ &= {f'''(z) \over f'(z)}-{3\over 2}\left({f''(z)\over f'(z)}\right)^2 \end{aligned} \]

  • \(\{f,z\}:=(Sf)(z)\)



뫼비우스 변환

  • \(F(z)=\frac{af(z)+b}{cf(z)+d}\) 일 때, \(\{f,z\}=\{F,z\}\) 가 성립한다
  • \(\{f,z\}=0\) 이면, \(f(z)=\frac{az+b}{cz+d}\)



이계 선형 미분방정식

  • 다음 형태의 이계 선형 미분방정식을 생각하자\[u''(z)+P(z)u(z)=0\]
  • \(u_1(z), u_2(z)\) 가 이 미분방정식의 일차독립인 두 해이면, \(w(z)=\frac{u_1(z)}{u_2(z)}\) 는 다음 미분방정식의 해이다\[\{w,z\}=2P(z)\]



슈바르츠 s-함수

(정리)

복소상반평면을 \(\alpha\pi,\beta\pi,\gamma\pi\) 를 세 각으로 갖는 삼각형으로 보내는 해석함수 \(w=s(z)\)는 다음 초기하미분방정식\(z(1-z)y''+(c-(a+b+1)z)y'-aby = 0\) 의 선형독립인 두 해, \(y_1(z),y_2(z)\) 의 비로 표현할 수 있다. 즉 \(w=\frac{y_1(z)}{y_2(z)}\) 이다.

여기서 \(\alpha =1-c,\beta =a-b,\gamma =-a-b+c\).


(증명)

\(P(z)=\frac{1}{4}\left(\frac{1-\alpha ^2}{z^2}+\frac{1-\gamma ^2}{(z-1)^2}+\frac{\alpha ^2+\gamma ^2-\beta ^2-1}{z(z-1)}\right)\) 라 하자.

원하는 해석함수는 미분방정식 \(\{w,z\}=2P(z)\)의 해이다.

위에서 서술한대로

\(u''(z)+P(z)u(z)=0\)의 선형독립인 두 해 \(u_1(z), u_2(z)\)에 대하여, \(w(z)=\frac{u_1(z)}{u_2(z)}\) 로 표현할 수 있다.


이계 선형 미분방정식 에서 얻은 결과에 따라, 미분방정식 \(u''(z)+P(z)u(z)=0\)를 초기하 미분방정식(Hypergeometric differential equations) 형태로 변형할 수 있다.

따라서 \(z(1-z)y''+(c-(a+b+1)z)y'-aby = 0\) 의 선형독립인 두 해, \(y_1(z),y_2(z)\)에 대하여, \(w(z)=\frac{y_1(z)}{y_2(z)}\)로 쓸 수 있다. ■





메모


관련된 항목들

매스매티카 파일 및 계산 리소스



사전 형태의 자료



관련논문

  • Tamanoi, Hirotaka. “Higher Schwarzian Operators and Combinatorics of the Schwarzian Derivative.” Mathematische Annalen 305, no. 1 (1996): 127–151. doi:10.1007/BF01444214.