"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/6124063">quantum dimensions</a>페이지로 이동하였습니다.)
 
(사용자 3명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
 
* borrowed from [[Andrews-Gordon identity]]
 
* borrowed from [[Andrews-Gordon identity]]
*  quantum dimension and there recurrence relation<br><math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}}</math> satisfies<br><math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math><br>
+
*  quantum dimension and thier recurrence relation
 +
:<math>d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}</math> satisfies
 +
:<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math>
  
 
+
  
#  (*choose k for c (2,k+2) minimal model*)k := 11<br> d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]<br> Table[{i, d[k, i]}, {i, 1, k}] // TableForm<br> Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,<br>    k}] // TableForm<br>
+
==diagonals of regular polygon==
#  Plot[d[k, i], {i, 0, 2 k}]<br>
+
* length of hepagon
 +
:<math>d_i = \frac{\sin (\pi  (i+1)/7)}{\sin (\pi/7)} </math>
  
 
+
  
 
+
==chebyshev polynomials==
 
 
<h5>cyclotomic numbers</h5>
 
 
 
* Gauss sums
 
* [http://pythagoras0.springnote.com/pages/3719171 원분다항식(cyclotomic polynomial)]
 
* character tables of finite groups
 
* values of Lie group characters at elements of finite order
 
*  matrix entries in the modular group representation coming from rational VOAs<br>
 
** [[Kac-Peterson modular S-matrix]]
 
* [[quantum dimensions|quantum dimension]] in RCFT
 
* [[fusion rules and Verlinde formula]]
 
* [http://pythagoras0.springnote.com/pages/3719171 Jones index of][[subfactors and Jones indices|subfactors]]
 
 
 
 
 
 
 
 
 
 
 
<h5>chebyshev polynomials</h5>
 
  
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
* http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html<br> also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity<br><br>
+
* http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity
 
 
 
 
 
 
 
 
 
 
<h5>history</h5>
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
 
 
 
<h5>related items</h5>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103);">encyclopedia</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
 
 
 
<h5>books</h5>
 
 
 
 
 
 
 
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103);">articles</h5>
 
 
 
 
 
 
 
* [[2010년 books and articles|논문정 리]]
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
  
* 구글 블로그 검색<br>
+
   
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
  
 
+
  
 
+
==related items==
  
<h5>experts on the field</h5>
+
* [[sl(2) - orthogonal polynomials and Lie theory]]
  
* http://arxiv.org/
+
  
 
+
  
 
+
==articles==
  
<h5>links</h5>
+
* [http://www.jstor.org/stable/2691048 Golden Fields: A Case for the Heptagon]
 +
** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
[[분류:개인노트]]
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
+
[[Category:quantum dimensions]]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 

2020년 12월 28일 (월) 05:01 기준 최신판

introduction

\[d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\] satisfies \[d_i^2=1+d_{i-1}d_{i+1}\] where \(d_0=1\), \(d_k=1\)


diagonals of regular polygon

  • length of hepagon

\[d_i = \frac{\sin (\pi (i+1)/7)}{\sin (\pi/7)} \]


chebyshev polynomials



related items



articles