"Group cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 3명의 중간 판 15개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* For a finite group G and its module M, <math>H^{0}(G,M)</math> is isomorphic to <math>M/N(M)</math> where <math>N(m) = \sum_{\sigma\in G}\sigma m</math>
  
 +
 +
 +
==central extension==
 +
* A central extension of a group <math>G</math> is a short exact sequence of groups
 +
:<math>1\rightarrow A\rightarrow E\rightarrow G\rightarrow 1</math>
 +
such that <math>A</math> is in <math>Z(E)</math>, the center of the group <math>E</math>. 
 +
* The set of isomorphism classes of central extensions of <math>G</math> by <math>A</math> (where <math>G</math> acts trivially on <math>A</math>) is in one-to-one correspondence with the cohomology group <math>H^2(G, A)</math>.
 +
 +
 +
 +
==expositions==
 +
* Sprehn, David. 2014. “Nonvanishing Cohomology Classes on Finite Groups of Lie Type with Coxeter Number at Most P.” arXiv:1407.3299 [math], July. http://arxiv.org/abs/1407.3299.
 +
* Nakano, Daniel K. “Cohomology of Algebraic Groups, Finite Groups, and Lie Algebras: Interactions and Connections.” arXiv:1404.3342 [math], April 12, 2014. http://arxiv.org/abs/1404.3342.
 +
* Alejandro Adem, <em>Recent developments in the cohomology of finite groups</em>, Notices Amer. Math. Soc. '''44''' (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf
 +
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:math]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 04:02 기준 최신판

introduction

  • For a finite group G and its module M, \(H^{0}(G,M)\) is isomorphic to \(M/N(M)\) where \(N(m) = \sum_{\sigma\in G}\sigma m\)


central extension

  • A central extension of a group \(G\) is a short exact sequence of groups

\[1\rightarrow A\rightarrow E\rightarrow G\rightarrow 1\] such that \(A\) is in \(Z(E)\), the center of the group \(E\).

  • The set of isomorphism classes of central extensions of \(G\) by \(A\) (where \(G\) acts trivially on \(A\)) is in one-to-one correspondence with the cohomology group \(H^2(G, A)\).


expositions

  • Sprehn, David. 2014. “Nonvanishing Cohomology Classes on Finite Groups of Lie Type with Coxeter Number at Most P.” arXiv:1407.3299 [math], July. http://arxiv.org/abs/1407.3299.
  • Nakano, Daniel K. “Cohomology of Algebraic Groups, Finite Groups, and Lie Algebras: Interactions and Connections.” arXiv:1404.3342 [math], April 12, 2014. http://arxiv.org/abs/1404.3342.
  • Alejandro Adem, Recent developments in the cohomology of finite groups, Notices Amer. Math. Soc. 44 (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf