"Group cohomology"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 3명의 중간 판 15개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * For a finite group G and its module M, <math>H^{0}(G,M)</math> is isomorphic to <math>M/N(M)</math> where <math>N(m) = \sum_{\sigma\in G}\sigma m</math> | ||
+ | |||
+ | |||
+ | ==central extension== | ||
+ | * A central extension of a group <math>G</math> is a short exact sequence of groups | ||
+ | :<math>1\rightarrow A\rightarrow E\rightarrow G\rightarrow 1</math> | ||
+ | such that <math>A</math> is in <math>Z(E)</math>, the center of the group <math>E</math>. | ||
+ | * The set of isomorphism classes of central extensions of <math>G</math> by <math>A</math> (where <math>G</math> acts trivially on <math>A</math>) is in one-to-one correspondence with the cohomology group <math>H^2(G, A)</math>. | ||
+ | |||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | * Sprehn, David. 2014. “Nonvanishing Cohomology Classes on Finite Groups of Lie Type with Coxeter Number at Most P.” arXiv:1407.3299 [math], July. http://arxiv.org/abs/1407.3299. | ||
+ | * Nakano, Daniel K. “Cohomology of Algebraic Groups, Finite Groups, and Lie Algebras: Interactions and Connections.” arXiv:1404.3342 [math], April 12, 2014. http://arxiv.org/abs/1404.3342. | ||
+ | * Alejandro Adem, <em>Recent developments in the cohomology of finite groups</em>, Notices Amer. Math. Soc. '''44''' (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf | ||
+ | [[분류:개인노트]] | ||
+ | [[분류:math and physics]] | ||
+ | [[분류:math]] | ||
+ | [[분류:migrate]] |
2020년 12월 28일 (월) 04:02 기준 최신판
introduction
- For a finite group G and its module M, \(H^{0}(G,M)\) is isomorphic to \(M/N(M)\) where \(N(m) = \sum_{\sigma\in G}\sigma m\)
central extension
- A central extension of a group \(G\) is a short exact sequence of groups
\[1\rightarrow A\rightarrow E\rightarrow G\rightarrow 1\] such that \(A\) is in \(Z(E)\), the center of the group \(E\).
- The set of isomorphism classes of central extensions of \(G\) by \(A\) (where \(G\) acts trivially on \(A\)) is in one-to-one correspondence with the cohomology group \(H^2(G, A)\).
expositions
- Sprehn, David. 2014. “Nonvanishing Cohomology Classes on Finite Groups of Lie Type with Coxeter Number at Most P.” arXiv:1407.3299 [math], July. http://arxiv.org/abs/1407.3299.
- Nakano, Daniel K. “Cohomology of Algebraic Groups, Finite Groups, and Lie Algebras: Interactions and Connections.” arXiv:1404.3342 [math], April 12, 2014. http://arxiv.org/abs/1404.3342.
- Alejandro Adem, Recent developments in the cohomology of finite groups, Notices Amer. Math. Soc. 44 (1997), no. 7, 806–812 http://www.ams.org/notices/199707/adem.pdf