"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 Ramanujan's Cubic Continued fractions 로 바꾸었습니다.)
 
(사용자 3명의 중간 판 19개는 보이지 않습니다)
1번째 줄: 1번째 줄:
FROM A RAMANUJAN-SELBERG CONTINUED FRACTION<br> TO A JACOBIAN IDENTITY
+
==introduction==
  
 
+
<math>{1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}</math>
  
 
+
<math>\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} </math>
  
 
+
<math>\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2</math>
  
RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTION
+
  
HEI-CHI CHAN
+
  
 
+
==history==
  
A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION<br> HEI-CHI CHAN
+
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
<math>G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1</math>
  
On Ramanujan’s cubic continued fraction by<br> Heng Huat Chan (Urbana, Ill.)
+
 +
  
 
+
  
[http://www.ams.org/proc/2002-130-01/S0002-9939-01-06183-4/home.html Explicit evaluations of a Ramanujan-Selberg continued fraction]
+
==articles==
  
Liang-Cheng Zhang
+
*  A new proof of two identities involving Ramanujan’s cubic continued fraction
 +
**  Chan, H.-C, 2010
 +
* [http://arxiv.org/abs/math/0502323 On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions]
 +
**  C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
 +
*  Some evaluations of Ramanujan’s cubic continued fraction(http://www.zentralblatt-math.org/zmath/search/?an=1148.11303)
 +
**  Bhargava, S., Vasuki, K.R., Sreeramamurthy, T.G., Indian J. Pure Appl. Math. 35, 1003–1025 (2004)
 +
*  Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.
 +
**  Chan, H.-C,  Int. J. Number Theory
 +
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]
 +
**  Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
 +
* [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.]
 +
**  Watson, G. N. 1929
  
 
+
  
http://matwbn.icm.edu.pl/ksiazki/aa/aa43/aa4331.pdf
+
Ramanujan's class invariants and cubic continued fraction
 +
 
 +
Berndt, 1995
 +
 +
 
 +
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf
 +
 
 +
[http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf ]
 +
 
 +
[[분류:개인노트]]
 +
[[분류:q-series]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 05:03 기준 최신판

introduction

\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}\)

\(\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} \)

\(\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2\)



history

\(G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1\)




articles


Ramanujan's class invariants and cubic continued fraction

Berndt, 1995


http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

[1]