"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
7번째 줄: 7번째 줄:
 
<math>\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2</math>
 
<math>\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2</math>
  
 
+
  
 
+
  
 
==history==
 
==history==
17번째 줄: 17번째 줄:
 
<math>G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1</math>
 
<math>G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1</math>
  
 
+
 
+
  
 
+
  
 
==articles==
 
==articles==
29번째 줄: 29번째 줄:
 
**  C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
 
**  C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
 
*  Some evaluations of Ramanujan’s cubic continued fraction(http://www.zentralblatt-math.org/zmath/search/?an=1148.11303)
 
*  Some evaluations of Ramanujan’s cubic continued fraction(http://www.zentralblatt-math.org/zmath/search/?an=1148.11303)
**  Bhargava, S., Vasuki, K.R., Sreeramamurthy, T.G., Indian J. Pure Appl. Math. 35, 1003–1025 (2004)
+
**  Bhargava, S., Vasuki, K.R., Sreeramamurthy, T.G., Indian J. Pure Appl. Math. 35, 1003–1025 (2004)
 
*  Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.
 
*  Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.
**  Chan, H.-C,  Int. J. Number Theory
+
**  Chan, H.-C, Int. J. Number Theory
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]
**  Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
+
**  Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
 
* [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.]
 
* [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.]
 
**  Watson, G. N. 1929
 
**  Watson, G. N. 1929
  
 
+
  
 
Ramanujan's class invariants and cubic continued fraction
 
Ramanujan's class invariants and cubic continued fraction
  
 
Berndt, 1995
 
Berndt, 1995
 
+
  
 
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf
 
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

2020년 12월 28일 (월) 05:03 기준 최신판

introduction

\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}\)

\(\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} \)

\(\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2\)



history

\(G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1\)




articles


Ramanujan's class invariants and cubic continued fraction

Berndt, 1995


http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

[1]