"Lectures on dilogarithm function"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 50개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==overview==
 
* dilogarithm function
 
* Bloch-Wigner dilogarithm function
 
* Bloch group
 
* values of the Dedekind zeta function at s=2
 
* volumes of hyperbolic 3-manifolds
 
 
 
==dilogarithm fuction==
 
==dilogarithm fuction==
 
* Define
 
* Define
18번째 줄: 11번째 줄:
 
:<math>\mbox{Li}_ 2(z)+\mbox{Li}_ 2(1-z)= \frac{\pi^2}{6}-\log(z)\log(1-z)</math>
 
:<math>\mbox{Li}_ 2(z)+\mbox{Li}_ 2(1-z)= \frac{\pi^2}{6}-\log(z)\log(1-z)</math>
 
;proof
 
;proof
:<math>\mbox{Li}_ 2(z)+\mbox{Li}_ 2(1/z)+\frac{1}{2}\log^2(-z)</math>
+
:<math>f(z): = \mbox{Li}_ 2(z)+\mbox{Li}_ 2(1/z)+\frac{1}{2}\log^2(-z)</math>
 
is constant
 
is constant
as its differentiation
+
as <math>f'(z)</math> is
$$
+
:<math>
 
-\frac{\log (1-z)}{z}+\frac{\log \left(1-\frac{1}{z}\right)}{z}+\frac{\log (-z)}{z}=0
 
-\frac{\log (1-z)}{z}+\frac{\log \left(1-\frac{1}{z}\right)}{z}+\frac{\log (-z)}{z}=0
$$
+
</math>
  
  
When $z=-1$,  
+
When <math>z=-1</math>,  
 
:<math>\mbox{Li}_ 2(z)+\mbox{Li}_ 2(1/z)+\frac{1}{2}\log^2(-z) = 2\mbox{Li}_ 2(-1)</math>
 
:<math>\mbox{Li}_ 2(z)+\mbox{Li}_ 2(1/z)+\frac{1}{2}\log^2(-z) = 2\mbox{Li}_ 2(-1)</math>
  
When $z=1$;
+
When <math>z=1</math>;
 
:<math>2\mbox{Li}_ 2(1)+\frac{1}{2}\log^2(-1) = 2\mbox{Li}_ 2(-1)</math>
 
:<math>2\mbox{Li}_ 2(1)+\frac{1}{2}\log^2(-1) = 2\mbox{Li}_ 2(-1)</math>
 
:<math>\frac{\pi^2}{3}-\frac{1}{2}\pi^2 = 2\mbox{Li}_ 2(-1)</math>
 
:<math>\frac{\pi^2}{3}-\frac{1}{2}\pi^2 = 2\mbox{Li}_ 2(-1)</math>
36번째 줄: 29번째 줄:
  
 
; five-term relation
 
; five-term relation
:<math>\mbox{Li}_ 2(x)+\mbox{Li}_ 2(y)+\mbox{Li}_ 2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_ 2(1-xy)+\mbox{Li}_ 2 \left( \frac{1-y}{1-xy} \right)</math>
+
:<math>\mbox{Li}_ 2(x)+\mbox{Li}_ 2(y)+\mbox{Li}_ 2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_ 2(1-xy)+\mbox{Li}_ 2 \left( \frac{1-y}{1-xy} \right)=\text{something elementary}</math>
  
 
Let us state this in terms of the Rogers dilogarithm (no worry about the branches)
 
Let us state this in terms of the Rogers dilogarithm (no worry about the branches)
43번째 줄: 36번째 줄:
 
:<math>L(x)+L(1-xy)+L(y)+L\left(\frac{1-y}{1-xy}\right)+L\left(\frac{1-x}{1-xy} \right)=\frac{\pi^2}{2}</math>
 
:<math>L(x)+L(1-xy)+L(y)+L\left(\frac{1-y}{1-xy}\right)+L\left(\frac{1-x}{1-xy} \right)=\frac{\pi^2}{2}</math>
  
;remark
+
;proof
Zagier has
+
Show that
$$
+
the partial derivatives of <math>F(x,y):=L(x)+L(1-xy)+L(y)+L\left(\frac{1-y}{1-xy}\right)+L\left(\frac{1-x}{1-xy} \right)</math> are 0.
\frac{\pi^2}{6}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})
+
Note
$$
+
:<math>
on the RHS, which is not correct
+
L(h(x))' = -\frac{h'(x) \log (1-h(x))}{2 h(x)}-\frac{h'(x) \log (h(x))}{2 (1-h(x))}.
 +
</math>
 +
 
 +
:<math>
 +
\begin{aligned}
 +
F_x = &
 +
\frac{1}{2} \left(\frac{\log (x)}{1-x}-\frac{\log (1-x)}{x}\right)+\frac{1}{2} \left(\frac{\log (1-x y)}{x}-\frac{y \log (x y)}{1-x y}\right)+0 \\
 +
& +\frac{(1-y)
 +
  \log \left(\frac{1-y}{1-x y}\right)+(1-x) y \log \left(\frac{(1-x) y}{1-x y}\right)}{2 (1-x) (1-x y)}-\frac{(1-x) \log \left(\frac{1-x}{1-x y}\right)+x (1-y)
 +
  \log \left(\frac{x (1-y)}{1-x y}\right)}{2 (1-x) x (1-x y)} \\
 +
& =\frac{1}{2} \log (x)\left(\frac{1}{1-x}+\frac{-y}{1-xy}+\frac{-(1-y)}{(1-x)  (1-x y)} \right)+\dots
 +
\end{aligned}
 +
</math>
 +
Do the same for <math>F_y</math>.
 +
 
 +
There is a more systematic way to control the cancellations.
 +
 
 +
Observe
 +
:<math>\frac{d}{dx}L(h(x))=\frac{1}{2}[\log(h(x))\frac{d}{dx}\log (1-h(x))-\log(1-h(x))\frac{d}{dx}\log h(x)]</math>
  
;proof
+
For <math>f,g\in \mathbb{Q}(x,y)</math>, define (symbolically)
 +
:<math>
 +
f\wedge g : = \log (f) d (\log (g))-\log (g) d (\log (f))
 +
</math>
 +
where <math>df = f_x dx + f_y dy</math>.
  
* <math>dL(y)=\frac{1}{2}[\log(y)d\log (1-y)-\log(1-y)d\log (y)]</math>
+
For example,
 +
<math>L'(x)dx =\frac{1}{2} x\wedge (1-x) </math>
  
 +
Then
 +
*<math>f\wedge g=-f \wedge g</math>
 +
*<math>(f_1f_2)\wedge g=f_1\wedge g+f_2\wedge g</math>
  
 +
So
 +
:<math>
 +
F_x dx+F_y dy = \frac{1}{2}\left(x\wedge (1-x)+(1-x y)\wedge (x y)+y\wedge (1-y)+\frac{1-y}{1-x y}\wedge \left(\frac{y(1-x)}{1-x y}\right)+\frac{1-x}{1-x y}\wedge \left(\frac{x(1-y)}{1-xy}\right) \right)=0
 +
</math>
  
 
;remark
 
;remark
67번째 줄: 90번째 줄:
  
  
 +
;remark
 +
Zagier has
 +
:<math>
 +
\frac{\pi^2}{6}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})
 +
</math>
 +
on the RHS, which is not correct
  
 
===special values===
 
===special values===
87번째 줄: 116번째 줄:
  
 
==Bloch-Wigner dilogarithm==
 
==Bloch-Wigner dilogarithm==
 +
* <math>\operatorname{Li}_2(z)</math> jumps by <math>2\pi i \log|z|</math> as <math>z</math> crosses the cut
 +
* consider <math>\operatorname{Li}_2(z)+i \log|z|\arg(1-z)</math>, where <math>-\pi <\arg z< \pi</math>
 +
* when it cross the line <math>(1,\infty)</math>, it becomes continuous
 +
;example
 +
:<math>
 +
\begin{aligned}
 +
\operatorname{Li}_2(2+0.001i) & = 2.46583 + 2.17759 i \\
 +
\operatorname{Li}_2(2-0.001i) & = 2.46583 - 2.17759 i
 +
\end{aligned}
 +
</math>
 +
and
 +
:<math>
 +
\begin{aligned}
 +
\log |(2+0.001i)| \arg(1-(2+0.001i)) & = 0. - 2.17689 i \\
 +
\log |(2-0.001i)| \arg(1-(2-0.001i)) & = 0. + 2.17689 i
 +
\end{aligned}
 +
</math>
 +
 +
 
* define
 
* define
$$D(z)=\text{Im}(\operatorname{Li}_2(z))+\log|z|\arg(1-z).$$
+
:<math>D(z)=\text{Im}(\operatorname{Li}_2(z))+\log|z|\arg(1-z).</math>
* real analytic function on $\mathbb{C}$ except at 0 and 1, where it is continuous but not differentiable.
+
* real analytic function on <math>\mathbb{C}</math> except at 0 and 1, where it is continuous but not differentiable.
* $D(\bar{z})=-D(z)$, and vanishes on $\mathbb{R}$.  
+
* <math>D(\bar{z})=-D(z)</math>, and vanishes on <math>\mathbb{R}</math>.  
 
* It satisfies the following functional equations :
 
* It satisfies the following functional equations :
 
\begin{equation}\label{functid1}
 
\begin{equation}\label{functid1}
101번째 줄: 149번째 줄:
 
==Bloch group==
 
==Bloch group==
  
* Zagier's 59p
+
* Let <math>\mathbb{F}</math> be a field
 
* <math>\Lambda^2({\mathbb{F}^{\times}})</math> the set of all formal linear combinations <math>x\wedge y</math>, <math>x,y\in\mathbb{F^{\times}}</math> subject to relations
 
* <math>\Lambda^2({\mathbb{F}^{\times}})</math> the set of all formal linear combinations <math>x\wedge y</math>, <math>x,y\in\mathbb{F^{\times}}</math> subject to relations
 
** <math>a\wedge b=-b \wedge a</math>
 
** <math>a\wedge b=-b \wedge a</math>
 
** <math>(x_1x_2)\wedge y=x_1\wedge y+x_2\wedge y</math>
 
** <math>(x_1x_2)\wedge y=x_1\wedge y+x_2\wedge y</math>
* <math>\mathbb{Z}[\mathbb{F}]</math>
+
* <math>\mathbb{Z}[\mathbb{F}^{\times}\backslash\{1\}]</math>
**  integer linear combination of elements <math>[x]</math> for <math>x\in \mathbb{Z}[\mathbb{F}]</math>
 
 
**  i.e. abelian group of formal sums <math>[x_1]+[x_2]+\cdots+[x_n]</math>, <math>x_1,x_2,\cdots,x_n\in \mathbb{F}\backslash\{0,1\}</math>
 
**  i.e. abelian group of formal sums <math>[x_1]+[x_2]+\cdots+[x_n]</math>, <math>x_1,x_2,\cdots,x_n\in \mathbb{F}\backslash\{0,1\}</math>
* <math>\partial : \mathbb{Z}[\mathbb{F}]\to  \Lambda^2({\mathbb{F}^{\times}})</math>
+
* <math>\partial : \mathbb{Z}[\mathbb{F}^{\times}\backslash\{1\}] \to  \Lambda^2({\mathbb{F}^{\times}})</math>
 
** <math>[x]\to x\wedge (1-x)</math>
 
** <math>[x]\to x\wedge (1-x)</math>
* Let <math>A(\mathbb{F})=\operatorname{ker}\partial</math> and <math>C(\mathbb{F})</math> subgroup of <math>A(\mathbb{F})=\operatorname{ker}\partial</math> generated by  
+
* Let <math>\mathcal{A}(\mathbb{F})=\operatorname{ker}\partial</math> and <math>\mathcal{C}(\mathbb{F})</math> subgroup of <math>\mathcal{A}(\mathbb{F})=\operatorname{ker}\partial</math> generated by  
 
:<math>[x]+[1-xy]+[y]+[\frac{1-y}{1-xy}]+[\frac{1-x}{1-xy}]</math>
 
:<math>[x]+[1-xy]+[y]+[\frac{1-y}{1-xy}]+[\frac{1-x}{1-xy}]</math>
 
* The Bloch group is defined to be
 
* The Bloch group is defined to be
:<math>B(\mathbb{F})=A(\mathbb{F})/C(\mathbb{F})</math>
+
:<math>\mathcal{B}(\mathbb{F})=\mathcal{A}(\mathbb{F})/\mathcal{C}(\mathbb{F})</math>
* we call the following homomorphism the Bloch complex
+
* <math>[x]+[1-x]</math> is in <math>\mathcal{B}(\mathbb{F})</math>
$$
+
* Q. is <math>[x]+[\frac{1}{x}]</math> in <math>\mathcal{B}(\mathbb{F})</math>?
\partial :B(\mathbb{F}) \to \Lambda^2({\mathbb{F}^{\times}})
+
 
$$
 
* $[x]+[1-x]$ is in $B(\mathbb{F})$?
 
* Q. is $[x]+[\frac{1}{x}]$ in $B(\mathbb{F})$?
 
  
 +
;example
 +
<math>F=\mathbb{Q}(\sqrt{-7})</math>
 +
 +
:<math>
 +
2[\frac{1+\sqrt{-7}}{2}]+[\frac{-1+\sqrt{-7}}{4}]\in \mathcal{B}(F)
 +
</math>
 +
 +
==values of Dedekind zeta at s=2==
 +
===Dedekind zeta===
 +
* Let <math>F</math> be a number field with <math>[F:\mathbb{Q}]=r_1+2r_2</math>
 +
* <math>\zeta _F(s):= \zeta_F (s) = \sum_{I \subseteq \mathcal{O}_F} \frac{1}{(N_{F/\mathbf{Q}} (I))^{s}}</math>
 +
* functional equation
 +
:<math>\xi_{F}(s)=\left|d_F\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _F(s)</math>:<math>\xi_{F}(s) = \xi_{F}(1 - s)</math>
 +
* at <math>s=-n, n=1,2\cdots</math>, <math>\zeta_F(s)</math> has zero of order <math>r_2</math> or <math>r_1+r_2</math> if <math>n</math> is even or odd, respectively
 +
:<math>
 +
2^{(m+1) r_2} \pi^{-\frac{1}{2} m \left(-r_1-2 r_2\right)}\zeta_F(-m) \Gamma  (-m)^{r_2}\Gamma(-\frac{m}{2} )^{r_1} \left| d_F\right| {}^{-\frac{m}{2}}\\
 +
=2^{-m r_2} \pi ^{\frac{1}{2} (m+1) \left(-r_1-2 r_2\right)} \zeta _F(m+1)\Gamma(\frac{m+1}{2})^{r_1}\Gamma  (m+1)^{r_2} \left| d_F\right| {}^{\frac{m+1}{2}}
 +
</math>
  
===examples of elements of a Bloch group===
+
===Dirichlet class number formula===
* <math>[\frac{1}{9}]-6[\frac{1}{3}]</math><math>L(\frac{1}{3^2})-6L(\frac{1}{3})+2L(1)=0</math>
+
* residue at <math>s=1</math>
*  refer to [http://pythagoras0.springnote.com/pages/5166333 dilogarithm 항등식]
+
:<math> \lim_{s\to 1} (s-1)\zeta_F(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_F\cdot R_F}{w_F \cdot \sqrt{|d_F|}}</math>
 +
* equivalently, <math>\zeta _F(s)</math> has zero of order <math>r_1+r_2-1</math> at <math>s=0</math>
 +
:<math> \lim_{s\to 0}\frac{\zeta_F(s)}{s^{r_1+r_2-1}}=-\frac{h_F R_F}{w_F}</math>
  
===Bloch-Suslin===
 
* <math>B(\mathbb{F})\simeq K_3^{\operatorname{ind}}(\mathbb{F})</math> ??
 
* <math>0\to \tilde{\mu_{F}}\to K_3^{\operatorname{ind}}(\mathbb{F}) \to  B(\mathbb{F})\to 0</math> where <math>0\to \mathbb{Z}/\mathbb{Z}_2 \to \tilde{\mu_{F}} \to \mu_{F}\to 0</math> where \mu_{F} is the unit group of F
 
* K^{ind} is a quotient of Milnor K3 by something else
 
  
==algebraic K-theory==
+
===algebraic K-theory===
* $F$ : number field
+
* <math>F</math> : number field
* $K_0(F) = \mathbb{Z}$
+
* <math>K_0(F) = \mathbb{Z}</math>
* $K_1(F) = F^{\times}$
+
* <math>K_1(F) = F^{\times}</math>
* $K_2(F) = F^{\times}\otimes F^{\times}/\langle x\otimes (1-x) \rangle$
+
* <math>K_2(F) = F^{\times}\otimes F^{\times}/\langle x\otimes (1-x) \rangle</math>
* $K_0(\mathcal{O}_F) = \mathbb{Z}\oplus Cl_F$
+
* <math>K_0(\mathcal{O}_F) = \mathbb{Z}\oplus Cl_F</math>
* $K_1(\mathcal{O}_F) = (\mathcal{O}_F)^{\times}$
+
* <math>K_1(\mathcal{O}_F) = (\mathcal{O}_F)^{\times}</math>
* $K_2(\mathcal{O}_F)$ : finite group
+
* <math>K_2(\mathcal{O}_F)</math> : finite group
* <math>K_3(\mathcal{O}_F)</math> is isomorphic to the Bloch group by Bloch-Suslin
 
  
==Borel's regulator==
+
===Borel's regulator===
* Let $F$ be a number field with $[F:\mathbb{Q}]=r_1+2r_2$
 
 
* Borel constructed a map
 
* Borel constructed a map
$$
+
:<math>
K_{2i-1}(F) \to \mathbb{R}^{d_{i}}
+
K_{2i-1}(F) \to \mathbb{R}^{d_{i}},\, i\geq 2
$$
+
</math>
where $d_i = r_2$ or $r_1+r_2$ depending on the parity of $i$
+
where <math>d_i = r_2</math>, or <math>r_1+r_2</math> depending on the parity of <math>i</math>
 
* this can be used to show
 
* this can be used to show
** $\operatorname{rank} K_3 =r_2$
+
** <math>\operatorname{rank} K_3 =d_2 = r_2</math>
** $\operatorname{rank} K_5=r_1+r_2$
+
** <math>\operatorname{rank} K_5=d_3 = r_1+r_2</math>
** $\operatorname{rank} K_7=r_2$
+
** <math>\operatorname{rank} K_7=d_4 = r_2</math>
* let $\mathcal{O}_{F}$ be the ring of integers of $F$
+
* the covolume of the image of <math>K_m,\, m=2i-1</math> under this regulator is a non-zero multiple of
* for any field L of characteristic zero,  $K_{i}(\mathcal{O}_{F})\otimes_{\Z}L$ is naturally isomorphic to $K_{i}(F)\otimes_{\Z}L$ for $i>1$
+
:<math>\frac{|d_{F}|^{1/2}}{\pi^{md_{i+1}}} \zeta_{F}(m)</math>
* http://www.ams.org/mathscinet-getitem?mr=1354171
+
* for <math>K_3</math>, <math>\frac{|d_{F}|^{1/2}}{\pi^{m(r_1+r_2)}} \zeta_{F}(2)</math>
* https://books.google.nl/books?id=ru7BywKC1d4C&pg=PA475&lpg=PA475&dq=Values+of+zeta-functions+at+integers,+cohomology+and+polylogarithms&source=bl&ots=BznObLSgR-&sig=X9LeM98z4cxje_axpCZjeUaY66U&hl=en&sa=X&ei=5rCMU-bqNMLwPInpgLgH&redir_esc=y#v=onepage&q=Values%20of%20zeta-functions%20at%20integers%2C%20cohomology%20and%20polylogarithms&f=false
+
* this is a generalization of Dirichlet's class number formula
 +
* the rational number given by the ratio is related to other <math>K</math>-groups (Lichtenbaum conjecture)
  
 +
===Zagier, Bloch, Suslin===
 +
* The Bloch-Wigner dilogarithm <math>D(z)</math> can be used to define a map from <math>\mathcal{B}(\mathbb{C})</math> to <math>\mathbb{R}</math>.
 +
* For <math>\xi=\sum_{i} n_i[x_i] \in \mathcal{B}(\mathbb{C})</math>, let <math>D(\xi)=\sum_{i} n_i D(x_i)</math>.
 +
* by the 5-term relation satisfied by <math>D</math>, it is well-defined
 +
* For an embedding <math>\sigma : F\hookrightarrow \mathbb{C}</math> and <math>\xi \in \mathcal{B}(F)</math>, we may consider  <math>D\left(\sigma(\xi)\right)</math>.
 +
* If <math>D\left(\sigma(\xi)\right)=0</math> for all such embeddings <math>\sigma</math>, then <math>\xi \in \mathcal{B}(F)</math> is a torsion element in <math>\mathcal{B}(F)</math>.
 +
* Bloch and Suslin connects <math>K_3</math> with the Bloch group
 +
* <math>D</math> is compatible with Borel's regulator
 +
:<math>
 +
\frac{|d_{F}|^{1/2}}{\pi^{2(r_1 + r_2)}} \zeta_{F}(2)
 +
\sim_{\mathbb{Q^{\times}}} \det\left(D(\sigma_i(\xi_j))\right)_{1\leq i,j\leq r_2}
 +
</math>
 +
where <math>\xi_i,(i=1,\cdots, r_2)</math> is <math>\mathbb{Q}</math>-basis of <math>\mathcal{B}(F)\otimes \mathbb{Q}</math> and <math>a\sim_{\mathbb{Q^{\times}}} b</math> means <math>a/b\in\mathbb{Q}</math>
 +
;example
 +
<math>F=\mathbb{Q}(\sqrt{-7})</math>
  
 +
:<math>
 +
\zeta_F(2) = \frac{4 \pi ^2}{21 \sqrt{7}} \left(D\left(\frac{-1+\sqrt{-7}}{4} \right)+2 D\left(\frac{1+ \sqrt{-7}}{2} \right)\right) =1.8948414489688\dots
 +
</math>
  
+
<math>F=\mathbb{Q}(\sqrt{-23})</math>
  
==regulator in algebraic K-theory==
+
:<math>
* The Bloch-Wigner dilogarithm $D(z)$ can be used to define a map from $\mathcal{B}(\mathbb{C})$ to $\mathbb{R}$.
+
\begin{aligned}
* For $\xi=\sum_{i} n_i[x_i] \in \mathcal{B}(\mathbb{C})$, let $D(\xi)=\sum_{i} n_i D(x_i)$.
+
\zeta_F(2) & = \frac{4 \pi ^2}{69 \sqrt{23}}\left(21D\left(\frac{1}{2} \left(1+\sqrt{-23}\right)\right)+7D\left(2+\sqrt{-23}\right)+D\left(\frac{1}{2} \left(3+\sqrt{-23}\right)\right)+D\left(3+\sqrt{-23}\right)-3D\left(\frac{1}{2} \left(5+\sqrt{-23}\right)\right)\right) \\
* By (\ref{functid1}) and (\ref{functid2}), it is well-defined.
+
& = 2.3081992895457\dots
* Let $F$ be a number field of degree $r_1+2r_2$ over $\mathbb{Q}$ where $r_1$ denotes the number of real embeddings and $r_2$ the number of complex non-real embeddings up to conjugation.
+
\end{aligned}
* For an embedding $\sigma : F\hookrightarrow \mathbb{C}$ and $\xi \in \mathcal{B}(F)$, we may consider  $D\left(\sigma(\xi)\right)$.
+
</math>
* If $D\left(\sigma(\xi)\right)=0$ for all such embeddings $\sigma$, then $\xi \in \mathcal{B}(F)$ is a torsion element in $\mathcal{B}(F)$.
 
  
 +
==hyperbolic 3-manifold==
 +
* <math>\mathbb{H}^3</math> : upper-half space; <math>SL_2(\mathbb{C})</math> acts as an isometry group
 +
* hyperbolic 3-manifold : quotient of <math>\mathbb{H}^3</math> by discrete isometry group
 +
* ideal tetrahedron is a tetrahedron whose vertices are in <math>\mathbb{C}\cup \{\infty\}</math>
 +
* let <math>\tilde{D}(z_0,z_1,z_2,z_3) : = D\left(\frac{\left(z_0-z_2\right) \left(z_1-z_3\right)}{\left(z_1-z_2\right) \left(z_0-z_3\right)}\right)</math>
 +
;fact
 +
Let <math>\Delta</math> an ideal tetrahedron with vertices <math>z_0,z_1,z_2,z_3</math>. Then its volume is given by <math>\tilde{D}(z_0,z_1,z_2,z_3)</math>.
 +
;fact
 +
# A complete oriented hyperbolic 3-manifold with finite volume can be triangulated into ideal tetrahedra <math>\Delta_1,\dots, \Delta_{\nu}</math>.
 +
# If we assume that the vertices of each tetrahedon are at <math>\infty, 0,1</math> and <math>z_{i}</math>, then
 +
:<math>
 +
[z_1]+\dots + [z_{\nu}]\in \mathcal{B}_{\mathbb{C}}
 +
</math>
 +
and the volume is given by <math>\sum D(z_i)</math>.
 +
===five-term relation reinterpreted===
 +
* Pachner move :  sum of two tetrahedra  = sum of three tetrahedra
 +
* it implies
 +
:<math>
 +
D\left(\frac{\left(z_0-z_2\right) \left(z_1-z_3\right)}{\left(z_1-z_2\right) \left(z_0-z_3\right)}\right)-D\left(\frac{\left(z_0-z_2\right)
 +
  \left(z_1-z_4\right)}{\left(z_1-z_2\right) \left(z_0-z_4\right)}\right)+D\left(\frac{\left(z_0-z_3\right) \left(z_1-z_4\right)}{\left(z_1-z_3\right)
 +
  \left(z_0-z_4\right)}\right)-D\left(\frac{\left(z_0-z_3\right) \left(z_2-z_4\right)}{\left(z_2-z_3\right)
 +
  \left(z_0-z_4\right)}\right)+D\left(\frac{\left(z_1-z_3\right) \left(z_2-z_4\right)}{\left(z_2-z_3\right) \left(z_1-z_4\right)}\right)=0
 +
</math>
 +
* if we set <math>z_0=\infty,z_1= 0,z_2= 1,z_3= x,z_4 =  x y</math>, we get
 +
:<math>
 +
D(x)-D(x y)+D(y)+D\left(\frac{1-x y}{y(1-x)}\right)-D\left(\frac{1-x y}{1-x}\right) = 0
 +
</math>
  
===Dedekind zeta===
+
;example (volume of regular ideal tetrahedron)
* 데데킨트 제타함수에 대해서 다음과 같은 함수방정식이 성립
+
* <math>\Delta_4</math> : ideal tetrahedron with vertices <math>\infty,0,1,e^{2\pi i/3}</math>
:<math>\xi_{K}(s)=\left|d_K\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _K(s)</math>:<math>\xi_{K}(s) = \xi_{K}(1 - s)</math>
+
* volume form on <math>\mathbb{H}^3</math> : <math>\frac{dx\,dy\,dz}{z^3}</math>. So the volume of <math>\Delta_4</math> is
* at $s=-n, n=1,2\cdots$, $\zeta_K(s)$ has zero of order $r_2$ or $r_1+r_2$ if $n$ is even or odd, respectively
+
:<math>
$$
+
\begin{aligned}
2^{(m+1) r_2} \pi^{-\frac{1}{2} m \left(-r_1-2 r_2\right)}\zeta_K(-m) \Gamma  (-m)^{r_2}\Gamma(-\frac{m}{2} )^{r_1} \left| d_K\right| {}^{-\frac{m}{2}}\\
+
\int\int\int_{\Delta_4}\frac{dx\,dy\,dz}{z^3} = \int\int_{\Delta_3}\int_{h(x,y)}^{\infty}\frac{1}{z^3}\,dz\,dx\,dy \\
=2^{-m r_2} \pi ^{\frac{1}{2} (m+1) \left(-r_1-2 r_2\right)} \zeta _K(m+1)\Gamma(\frac{m+1}{2})^{r_1}\Gamma  (m+1)^{r_2} \left| d_K\right| {}^{\frac{m+1}{2}}
+
& =  \int\int_{\Delta_3}\frac{1}{2h(x,y)^2}\,dx\,dy \\  
$$
+
\end{aligned}
* this implies
+
</math>
$$
+
* this integral becomes
\pi^{-d_m} \lim_{s\to -m}\frac{\zeta_K(-m)}{(s+m)^{d_m}} \sim_{\mathbb{Q}^{\times}}\pi ^{-(m+1)(r_1+2 r_2)} \zeta _K(m+1)\left| d_K\right| {}^{\frac{1}{2}}
 
$$
 
where  $d_1 =d_3=\dots =  r_2$ or $d_2=d_4=\dots =r_1+r_2$
 
 
 
===디리클레 유수 공식===
 
* <math>s=1</math> 에서의 유수(residue)는 디리클레 유수 (class number) 공식으로 주어진다
 
:<math> \lim_{s\to 1} (s-1)\zeta_K(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_K\cdot R_K}{w_K \cdot \sqrt{|d_K|}}</math>
 
* <math>s=0</math> 에서 order 가 <math>r_1+r_2-1</math> 인 zero를 가지며 다음이 성립한다:<math> \lim_{s\to 0}\frac{\zeta_K(s)}{s^{r_1+r_2-1}}=-\frac{h_K R_K}{w_K}</math>
 
 
 
===Zagier, Bloch, Suslin===
 
* <math>[K : \mathbb{Q}] = r_1 + 2r_2</math>일 때,
 
 
:<math>
 
:<math>
\frac{|d_{K}|^{1/2}}{\pi^{2(r_1 + r_2)}} \zeta_{K}(2)
+
\int\int_{\Delta_3'}\frac{1}{2(\frac{1}{3}-x^2-y^2)}\,dx\,dy  = 1.01494\dots
\sim_{\mathbb{Q^{\times}}} \det\left(D(\sigma_i(\xi_j))\right)_{1\leq i,j\leq r_2}
+
</math>
</math> 여기서 <math>\xi_i,(i=1,\cdots, r_2)</math> 는 Bloch group <math>B(K)\otimes \mathbb{Q}</math>의 $\mathbb{Q}$-basis D는 블로흐-비그너 다이로그(Bloch-Wigner dilogarithm) 함수이며, <math>a\sim_{\mathbb{Q^{\times}}} b</math> <math>a/b\in\mathbb{Q}</math> 를 의미함
+
where <math>\Delta_3'</math> is the triangle with vertices <math>0,1,e^{2\pi i/3}</math> translated so that they lie on the circle with center <math>(0,0)</math>
  
==hyperbolic 3-manifold==
+
==메모==
* 집합 <math>\{0,1,\infty,y,xy\}</math> 에서 4개의 원소를 뽑아 얻어지는 [[교차비(cross ratio)]]
+
===Bloch-Suslin===
 +
* <math>B(\mathbb{F})\simeq K_3^{\operatorname{ind}}(\mathbb{F})</math> ??
 +
* <math>0\to \tilde{\mu_{F}}\to K_3^{\operatorname{ind}}(\mathbb{F}) \to  B(\mathbb{F})\to 0</math> where <math>0\to \mathbb{Z}/\mathbb{Z}_2 \to \tilde{\mu_{F}} \to \mu_{F}\to 0</math> where \mu_{F} is the unit group of F
 +
* <math>K_3^{\operatorname{ind}}(\mathbb{F})</math> is a quotient of Milnor K3 by something else
  
  
==background==
+
* functional equation of <math>\zeta_K</math> implies
* 다른게 아니라 저랑 강원대 강순이 박사님이랑 최근에 Zagier 교수님 쓰신 dilogarithm 논문에 관심이 생겼는데 quantum dilogarithm을 포함해서 자기에 교수님 논문 내용을 강연해줄 수 있는지 부탁드리고자 편지드려요.
+
:<math>
* Bloc 그룹도 강의해줄 수 있으면 더 좋지만, 아니면 남 추측 관련해서 공부했던 내용이라도 강의해주면 많은 도움이 될 것 같아요.
+
\pi^{-d_m} \lim_{s\to -m}\frac{\zeta_K(-m)}{(s+m)^{d_m}} \sim_{\mathbb{Q}^{\times}}\pi ^{-(m+1)(r_1+2 r_2)} \zeta _K(m+1)\left| d_K\right| {}^{\frac{1}{2}}
* 자기에 교수님 dilogarithm 논문을 읽는데, 부끄럽지만 무슨 말인지 전혀 모르겠더라고요.
+
</math>
* q가 나오는 부분과 점근식 부분은 그래도 알겠는데, 나머지 부분들은 능력 밖이라 도움 받을 수 있나해서 여쭤본 겁니다.
+
where  <math>d_1 =d_3=\dots =  r_2</math> or <math>d_2=d_4=\dots =r_1+r_2</math>
* 그러니까 Bloc 그룹도 이 논문에 나오는 정도 이해할 수 있으면 저는 만족이에요.
 
* quantum dilogarithm 쪽으로 무언가 더 해볼 여지가 있는지 궁금해서 우선 자기에 교수님 논문부터 시작해보려고 했었는데, 시작부터 어렵네요
 
  
 
==related items==
 
==related items==
212번째 줄: 305번째 줄:
 
* [[Bloch group]]
 
* [[Bloch group]]
 
* [[Ideal triangulations of 3-manifolds and the Bloch invariant]]
 
* [[Ideal triangulations of 3-manifolds and the Bloch invariant]]
 +
* [[Talk on dilogarithm function and five-term relation]]
 +
  
 
==links==
 
==links==
218번째 줄: 313번째 줄:
 
* {{수학노트|url=블로흐-비그너_다이로그(Bloch-Wigner_dilogarithm)}}
 
* {{수학노트|url=블로흐-비그너_다이로그(Bloch-Wigner_dilogarithm)}}
 
* {{수학노트|url=함수_다이로그_항등식(functional_dilogarithm_identity)}}
 
* {{수학노트|url=함수_다이로그_항등식(functional_dilogarithm_identity)}}
 +
 +
[[분류:Talks and lecture notes]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 04:07 기준 최신판

dilogarithm fuction

  • Define

\[\operatorname{Li}_ 2(z)= \sum_{n=1}^\infty {z^n \over n^2},\, |z|<1\]

  • extend domain

\[\operatorname{Li}_ 2(z) = -\int_0^z{{\log (1-t)}\over t} dt,\, z\in \mathbb C\backslash [1,\infty) \]


functional equations

reflection properties

\[\mbox{Li}_ 2(z)+\mbox{Li}_ 2(1/z)= -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-z)\] \[\mbox{Li}_ 2(z)+\mbox{Li}_ 2(1-z)= \frac{\pi^2}{6}-\log(z)\log(1-z)\]

proof

\[f(z): = \mbox{Li}_ 2(z)+\mbox{Li}_ 2(1/z)+\frac{1}{2}\log^2(-z)\] is constant as \(f'(z)\) is \[ -\frac{\log (1-z)}{z}+\frac{\log \left(1-\frac{1}{z}\right)}{z}+\frac{\log (-z)}{z}=0 \]


When \(z=-1\), \[\mbox{Li}_ 2(z)+\mbox{Li}_ 2(1/z)+\frac{1}{2}\log^2(-z) = 2\mbox{Li}_ 2(-1)\]

When \(z=1\); \[2\mbox{Li}_ 2(1)+\frac{1}{2}\log^2(-1) = 2\mbox{Li}_ 2(-1)\] \[\frac{\pi^2}{3}-\frac{1}{2}\pi^2 = 2\mbox{Li}_ 2(-1)\]

five-term relation

\[\mbox{Li}_ 2(x)+\mbox{Li}_ 2(y)+\mbox{Li}_ 2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_ 2(1-xy)+\mbox{Li}_ 2 \left( \frac{1-y}{1-xy} \right)=\text{something elementary}\]

Let us state this in terms of the Rogers dilogarithm (no worry about the branches) \[L(x): =\operatorname{Li}_ 2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\left(\frac{\log(1-y)}{y}+\frac{\log(y)}{1-y}\right)dy,\, x\in (0,1)\]

  • \(0\leq x,y\leq 1\)

\[L(x)+L(1-xy)+L(y)+L\left(\frac{1-y}{1-xy}\right)+L\left(\frac{1-x}{1-xy} \right)=\frac{\pi^2}{2}\]

proof

Show that the partial derivatives of \(F(x,y):=L(x)+L(1-xy)+L(y)+L\left(\frac{1-y}{1-xy}\right)+L\left(\frac{1-x}{1-xy} \right)\) are 0. Note \[ L(h(x))' = -\frac{h'(x) \log (1-h(x))}{2 h(x)}-\frac{h'(x) \log (h(x))}{2 (1-h(x))}. \]

\[ \begin{aligned} F_x = & \frac{1}{2} \left(\frac{\log (x)}{1-x}-\frac{\log (1-x)}{x}\right)+\frac{1}{2} \left(\frac{\log (1-x y)}{x}-\frac{y \log (x y)}{1-x y}\right)+0 \\ & +\frac{(1-y) \log \left(\frac{1-y}{1-x y}\right)+(1-x) y \log \left(\frac{(1-x) y}{1-x y}\right)}{2 (1-x) (1-x y)}-\frac{(1-x) \log \left(\frac{1-x}{1-x y}\right)+x (1-y) \log \left(\frac{x (1-y)}{1-x y}\right)}{2 (1-x) x (1-x y)} \\ & =\frac{1}{2} \log (x)\left(\frac{1}{1-x}+\frac{-y}{1-xy}+\frac{-(1-y)}{(1-x) (1-x y)} \right)+\dots \end{aligned} \] Do the same for \(F_y\).

There is a more systematic way to control the cancellations.

Observe \[\frac{d}{dx}L(h(x))=\frac{1}{2}[\log(h(x))\frac{d}{dx}\log (1-h(x))-\log(1-h(x))\frac{d}{dx}\log h(x)]\]

For \(f,g\in \mathbb{Q}(x,y)\), define (symbolically) \[ f\wedge g : = \log (f) d (\log (g))-\log (g) d (\log (f)) \] where \(df = f_x dx + f_y dy\).

For example, \(L'(x)dx =\frac{1}{2} x\wedge (1-x) \)

Then

  • \(f\wedge g=-f \wedge g\)
  • \((f_1f_2)\wedge g=f_1\wedge g+f_2\wedge g\)

So \[ F_x dx+F_y dy = \frac{1}{2}\left(x\wedge (1-x)+(1-x y)\wedge (x y)+y\wedge (1-y)+\frac{1-y}{1-x y}\wedge \left(\frac{y(1-x)}{1-x y}\right)+\frac{1-x}{1-x y}\wedge \left(\frac{x(1-y)}{1-xy}\right) \right)=0 \]

remark
  • recurrence relation

\[1-x_{i}=x_{i-1}x_{i+1},\, x_0=x,\, x_2=y\]

  • 5-periodic solution

\[x_0=x, x_1=1-xy, x_2=y, x_3=\frac{1-y}{1-xy}, x_4=\frac{1-x}{1-xy}\] 5항 관계식 (5-term relation)3.png

remark
  • we believe(?) all functional equations are coming from the five-term relation


remark

Zagier has \[ \frac{\pi^2}{6}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy}) \] on the RHS, which is not correct

special values

\(\mbox{Li}_{2}(0)=0\)

\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)

\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)

\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

Bloch-Wigner dilogarithm

  • \(\operatorname{Li}_2(z)\) jumps by \(2\pi i \log|z|\) as \(z\) crosses the cut
  • consider \(\operatorname{Li}_2(z)+i \log|z|\arg(1-z)\), where \(-\pi <\arg z< \pi\)
  • when it cross the line \((1,\infty)\), it becomes continuous
example

\[ \begin{aligned} \operatorname{Li}_2(2+0.001i) & = 2.46583 + 2.17759 i \\ \operatorname{Li}_2(2-0.001i) & = 2.46583 - 2.17759 i \end{aligned} \] and \[ \begin{aligned} \log |(2+0.001i)| \arg(1-(2+0.001i)) & = 0. - 2.17689 i \\ \log |(2-0.001i)| \arg(1-(2-0.001i)) & = 0. + 2.17689 i \end{aligned} \]


  • define

\[D(z)=\text{Im}(\operatorname{Li}_2(z))+\log|z|\arg(1-z).\]

  • real analytic function on \(\mathbb{C}\) except at 0 and 1, where it is continuous but not differentiable.
  • \(D(\bar{z})=-D(z)\), and vanishes on \(\mathbb{R}\).
  • It satisfies the following functional equations :

\begin{equation}\label{functid1} D(x)+D(1-xy)+D(y)+D(\frac{1-y}{1-xy})+D(\frac{1-x}{1-xy})=0, \end{equation} \begin{equation}\label{functid2} D(x)+D(1-x) =D(x)+D(\frac{1}{x})=0. \end{equation}

Bloch group

  • Let \(\mathbb{F}\) be a field
  • \(\Lambda^2({\mathbb{F}^{\times}})\) the set of all formal linear combinations \(x\wedge y\), \(x,y\in\mathbb{F^{\times}}\) subject to relations
    • \(a\wedge b=-b \wedge a\)
    • \((x_1x_2)\wedge y=x_1\wedge y+x_2\wedge y\)
  • \(\mathbb{Z}[\mathbb{F}^{\times}\backslash\{1\}]\)
    • i.e. abelian group of formal sums \([x_1]+[x_2]+\cdots+[x_n]\), \(x_1,x_2,\cdots,x_n\in \mathbb{F}\backslash\{0,1\}\)
  • \(\partial : \mathbb{Z}[\mathbb{F}^{\times}\backslash\{1\}] \to \Lambda^2({\mathbb{F}^{\times}})\)
    • \([x]\to x\wedge (1-x)\)
  • Let \(\mathcal{A}(\mathbb{F})=\operatorname{ker}\partial\) and \(\mathcal{C}(\mathbb{F})\) subgroup of \(\mathcal{A}(\mathbb{F})=\operatorname{ker}\partial\) generated by

\[[x]+[1-xy]+[y]+[\frac{1-y}{1-xy}]+[\frac{1-x}{1-xy}]\]

  • The Bloch group is defined to be

\[\mathcal{B}(\mathbb{F})=\mathcal{A}(\mathbb{F})/\mathcal{C}(\mathbb{F})\]

  • \([x]+[1-x]\) is in \(\mathcal{B}(\mathbb{F})\)
  • Q. is \([x]+[\frac{1}{x}]\) in \(\mathcal{B}(\mathbb{F})\)?


example

\(F=\mathbb{Q}(\sqrt{-7})\)

\[ 2[\frac{1+\sqrt{-7}}{2}]+[\frac{-1+\sqrt{-7}}{4}]\in \mathcal{B}(F) \]

values of Dedekind zeta at s=2

Dedekind zeta

  • Let \(F\) be a number field with \([F:\mathbb{Q}]=r_1+2r_2\)
  • \(\zeta _F(s):= \zeta_F (s) = \sum_{I \subseteq \mathcal{O}_F} \frac{1}{(N_{F/\mathbf{Q}} (I))^{s}}\)
  • functional equation

\[\xi_{F}(s)=\left|d_F\right|{}^{s/2} 2^{r_2 (1-s)} \pi ^{\frac{1}{2} \left(-r_1-2 r_2\right) s}\Gamma \left(\frac{s}{2}\right)^{r_1} \Gamma (s)^{r_2}\zeta _F(s)\]\[\xi_{F}(s) = \xi_{F}(1 - s)\]

  • at \(s=-n, n=1,2\cdots\), \(\zeta_F(s)\) has zero of order \(r_2\) or \(r_1+r_2\) if \(n\) is even or odd, respectively

\[ 2^{(m+1) r_2} \pi^{-\frac{1}{2} m \left(-r_1-2 r_2\right)}\zeta_F(-m) \Gamma (-m)^{r_2}\Gamma(-\frac{m}{2} )^{r_1} \left| d_F\right| {}^{-\frac{m}{2}}\\ =2^{-m r_2} \pi ^{\frac{1}{2} (m+1) \left(-r_1-2 r_2\right)} \zeta _F(m+1)\Gamma(\frac{m+1}{2})^{r_1}\Gamma (m+1)^{r_2} \left| d_F\right| {}^{\frac{m+1}{2}} \]

Dirichlet class number formula

  • residue at \(s=1\)

\[ \lim_{s\to 1} (s-1)\zeta_F(s)=\frac{2^{r_1}\cdot(2\pi)^{r_2}\cdot h_F\cdot R_F}{w_F \cdot \sqrt{|d_F|}}\]

  • equivalently, \(\zeta _F(s)\) has zero of order \(r_1+r_2-1\) at \(s=0\)

\[ \lim_{s\to 0}\frac{\zeta_F(s)}{s^{r_1+r_2-1}}=-\frac{h_F R_F}{w_F}\]


algebraic K-theory

  • \(F\) : number field
  • \(K_0(F) = \mathbb{Z}\)
  • \(K_1(F) = F^{\times}\)
  • \(K_2(F) = F^{\times}\otimes F^{\times}/\langle x\otimes (1-x) \rangle\)
  • \(K_0(\mathcal{O}_F) = \mathbb{Z}\oplus Cl_F\)
  • \(K_1(\mathcal{O}_F) = (\mathcal{O}_F)^{\times}\)
  • \(K_2(\mathcal{O}_F)\) : finite group

Borel's regulator

  • Borel constructed a map

\[ K_{2i-1}(F) \to \mathbb{R}^{d_{i}},\, i\geq 2 \] where \(d_i = r_2\), or \(r_1+r_2\) depending on the parity of \(i\)

  • this can be used to show
    • \(\operatorname{rank} K_3 =d_2 = r_2\)
    • \(\operatorname{rank} K_5=d_3 = r_1+r_2\)
    • \(\operatorname{rank} K_7=d_4 = r_2\)
  • the covolume of the image of \(K_m,\, m=2i-1\) under this regulator is a non-zero multiple of

\[\frac{|d_{F}|^{1/2}}{\pi^{md_{i+1}}} \zeta_{F}(m)\]

  • for \(K_3\), \(\frac{|d_{F}|^{1/2}}{\pi^{m(r_1+r_2)}} \zeta_{F}(2)\)
  • this is a generalization of Dirichlet's class number formula
  • the rational number given by the ratio is related to other \(K\)-groups (Lichtenbaum conjecture)

Zagier, Bloch, Suslin

  • The Bloch-Wigner dilogarithm \(D(z)\) can be used to define a map from \(\mathcal{B}(\mathbb{C})\) to \(\mathbb{R}\).
  • For \(\xi=\sum_{i} n_i[x_i] \in \mathcal{B}(\mathbb{C})\), let \(D(\xi)=\sum_{i} n_i D(x_i)\).
  • by the 5-term relation satisfied by \(D\), it is well-defined
  • For an embedding \(\sigma : F\hookrightarrow \mathbb{C}\) and \(\xi \in \mathcal{B}(F)\), we may consider \(D\left(\sigma(\xi)\right)\).
  • If \(D\left(\sigma(\xi)\right)=0\) for all such embeddings \(\sigma\), then \(\xi \in \mathcal{B}(F)\) is a torsion element in \(\mathcal{B}(F)\).
  • Bloch and Suslin connects \(K_3\) with the Bloch group
  • \(D\) is compatible with Borel's regulator

\[ \frac{|d_{F}|^{1/2}}{\pi^{2(r_1 + r_2)}} \zeta_{F}(2) \sim_{\mathbb{Q^{\times}}} \det\left(D(\sigma_i(\xi_j))\right)_{1\leq i,j\leq r_2} \] where \(\xi_i,(i=1,\cdots, r_2)\) is \(\mathbb{Q}\)-basis of \(\mathcal{B}(F)\otimes \mathbb{Q}\) and \(a\sim_{\mathbb{Q^{\times}}} b\) means \(a/b\in\mathbb{Q}\)

example

\(F=\mathbb{Q}(\sqrt{-7})\)

\[ \zeta_F(2) = \frac{4 \pi ^2}{21 \sqrt{7}} \left(D\left(\frac{-1+\sqrt{-7}}{4} \right)+2 D\left(\frac{1+ \sqrt{-7}}{2} \right)\right) =1.8948414489688\dots \]

\(F=\mathbb{Q}(\sqrt{-23})\)

\[ \begin{aligned} \zeta_F(2) & = \frac{4 \pi ^2}{69 \sqrt{23}}\left(21D\left(\frac{1}{2} \left(1+\sqrt{-23}\right)\right)+7D\left(2+\sqrt{-23}\right)+D\left(\frac{1}{2} \left(3+\sqrt{-23}\right)\right)+D\left(3+\sqrt{-23}\right)-3D\left(\frac{1}{2} \left(5+\sqrt{-23}\right)\right)\right) \\ & = 2.3081992895457\dots \end{aligned} \]

hyperbolic 3-manifold

  • \(\mathbb{H}^3\) : upper-half space; \(SL_2(\mathbb{C})\) acts as an isometry group
  • hyperbolic 3-manifold : quotient of \(\mathbb{H}^3\) by discrete isometry group
  • ideal tetrahedron is a tetrahedron whose vertices are in \(\mathbb{C}\cup \{\infty\}\)
  • let \(\tilde{D}(z_0,z_1,z_2,z_3) : = D\left(\frac{\left(z_0-z_2\right) \left(z_1-z_3\right)}{\left(z_1-z_2\right) \left(z_0-z_3\right)}\right)\)
fact

Let \(\Delta\) an ideal tetrahedron with vertices \(z_0,z_1,z_2,z_3\). Then its volume is given by \(\tilde{D}(z_0,z_1,z_2,z_3)\).

fact
  1. A complete oriented hyperbolic 3-manifold with finite volume can be triangulated into ideal tetrahedra \(\Delta_1,\dots, \Delta_{\nu}\).
  2. If we assume that the vertices of each tetrahedon are at \(\infty, 0,1\) and \(z_{i}\), then

\[ [z_1]+\dots + [z_{\nu}]\in \mathcal{B}_{\mathbb{C}} \] and the volume is given by \(\sum D(z_i)\).

five-term relation reinterpreted

  • Pachner move : sum of two tetrahedra = sum of three tetrahedra
  • it implies

\[ D\left(\frac{\left(z_0-z_2\right) \left(z_1-z_3\right)}{\left(z_1-z_2\right) \left(z_0-z_3\right)}\right)-D\left(\frac{\left(z_0-z_2\right) \left(z_1-z_4\right)}{\left(z_1-z_2\right) \left(z_0-z_4\right)}\right)+D\left(\frac{\left(z_0-z_3\right) \left(z_1-z_4\right)}{\left(z_1-z_3\right) \left(z_0-z_4\right)}\right)-D\left(\frac{\left(z_0-z_3\right) \left(z_2-z_4\right)}{\left(z_2-z_3\right) \left(z_0-z_4\right)}\right)+D\left(\frac{\left(z_1-z_3\right) \left(z_2-z_4\right)}{\left(z_2-z_3\right) \left(z_1-z_4\right)}\right)=0 \]

  • if we set \(z_0=\infty,z_1= 0,z_2= 1,z_3= x,z_4 = x y\), we get

\[ D(x)-D(x y)+D(y)+D\left(\frac{1-x y}{y(1-x)}\right)-D\left(\frac{1-x y}{1-x}\right) = 0 \]

example (volume of regular ideal tetrahedron)
  • \(\Delta_4\) : ideal tetrahedron with vertices \(\infty,0,1,e^{2\pi i/3}\)
  • volume form on \(\mathbb{H}^3\) \[\frac{dx\,dy\,dz}{z^3}\]. So the volume of \(\Delta_4\) is

\[ \begin{aligned} \int\int\int_{\Delta_4}\frac{dx\,dy\,dz}{z^3} & = \int\int_{\Delta_3}\int_{h(x,y)}^{\infty}\frac{1}{z^3}\,dz\,dx\,dy \\ & = \int\int_{\Delta_3}\frac{1}{2h(x,y)^2}\,dx\,dy \\ \end{aligned} \]

  • this integral becomes

\[ \int\int_{\Delta_3'}\frac{1}{2(\frac{1}{3}-x^2-y^2)}\,dx\,dy = 1.01494\dots \] where \(\Delta_3'\) is the triangle with vertices \(0,1,e^{2\pi i/3}\) translated so that they lie on the circle with center \((0,0)\)

메모

Bloch-Suslin

  • \(B(\mathbb{F})\simeq K_3^{\operatorname{ind}}(\mathbb{F})\) ??
  • \(0\to \tilde{\mu_{F}}\to K_3^{\operatorname{ind}}(\mathbb{F}) \to B(\mathbb{F})\to 0\) where \(0\to \mathbb{Z}/\mathbb{Z}_2 \to \tilde{\mu_{F}} \to \mu_{F}\to 0\) where \mu_{F} is the unit group of F
  • \(K_3^{\operatorname{ind}}(\mathbb{F})\) is a quotient of Milnor K3 by something else


  • functional equation of \(\zeta_K\) implies

\[ \pi^{-d_m} \lim_{s\to -m}\frac{\zeta_K(-m)}{(s+m)^{d_m}} \sim_{\mathbb{Q}^{\times}}\pi ^{-(m+1)(r_1+2 r_2)} \zeta _K(m+1)\left| d_K\right| {}^{\frac{1}{2}} \] where \(d_1 =d_3=\dots = r_2\) or \(d_2=d_4=\dots =r_1+r_2\)

related items


links