"Slater 37"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 하나는 보이지 않습니다)
3번째 줄: 3번째 줄:
 
*  not checked
 
*  not checked
  
 
+
  
 
+
  
 
==type of identity==
 
==type of identity==
12번째 줄: 12번째 줄:
 
*  I(17)
 
*  I(17)
  
 
+
  
 
+
  
 
==Bailey pair 1==
 
==Bailey pair 1==
  
*  Use the folloing<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math>
+
*  Use the folloing<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math>
 
*  Specialize<math>x=q^{3}, y=-q, z\to\infty</math>.
 
*  Specialize<math>x=q^{3}, y=-q, z\to\infty</math>.
 
*  Bailey pair<math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math>
 
*  Bailey pair<math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math>
  
 
+
  
 
+
  
 
==Bailey pair 2==
 
==Bailey pair 2==
  
*  Use the following '''[Slater52-1] '''(4.2)  
+
*  Use the following '''[Slater52-1] '''(4.2)
 
*  Specialize<math>a=q^{2},d=q^2,e=q</math>
 
*  Specialize<math>a=q^{2},d=q^2,e=q</math>
*  Bailey pair<math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math>
+
*  Bailey pair<math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math>
  
 
+
  
 
+
  
==Bailey pair ==
+
==Bailey pair ==
  
*  Bailey pairs  <math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math>  <math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><math>\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math>
+
*  Bailey pairs <math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math> <math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><math>\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math>
  
 
+
  
 
+
  
 
==q-series identity==
 
==q-series identity==
48번째 줄: 48번째 줄:
 
<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
 
<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
  
* [[Bailey pair and lemma|Bailey's lemma]]<math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}</math> ([http://pythagoras0.springnote.com/pages/4145675 오일러의 오각수정리(pentagonal number theorem)] was used to verify this)<math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}</math>
+
* [[Bailey pair and lemma|Bailey's lemma]]<math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}</math> ([http://pythagoras0.springnote.com/pages/4145675 오일러의 오각수정리(pentagonal number theorem)] was used to verify this)<math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}</math>
  
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
 
+
  
 
+
  
 
==Bethe type equation (cyclotomic equation)==
 
==Bethe type equation (cyclotomic equation)==
  
Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{
+
Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{
 
  \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.
 
  \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>.
  
Then <math>\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a</math>  has a unique root <math>0<\mu<1</math>. We get
+
Then <math>\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a</math> has a unique root <math>0<\mu<1</math>. We get
  
 
<math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>
 
<math>\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})</math>
  
 
+
  
 
a=1,d=1,e=1
 
a=1,d=1,e=1
  
The equation  becomes <math>1-x=x</math>.
+
The equation  becomes <math>1-x=x</math>.
  
 
<math>4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2</math>
 
<math>4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2</math>
  
 
+
  
 
+
  
 
==dilogarithm identity==
 
==dilogarithm identity==
82번째 줄: 82번째 줄:
 
<math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>
 
<math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>
  
 
+
  
 
+
  
 
==related items==
 
==related items==
90번째 줄: 90번째 줄:
 
* [[asymptotic analysis of basic hypergeometric series]]
 
* [[asymptotic analysis of basic hypergeometric series]]
  
 
+
  
 
+
  
==articles==
+
==articles==   
 
 
*  
 
 
* [http://www.combinatorics.org/Surveys/ds15.pdf Rogers-Ramanujan-Slater Type identities]
 
* [http://www.combinatorics.org/Surveys/ds15.pdf Rogers-Ramanujan-Slater Type identities]
 
**  McLaughlin, 2008
 
**  McLaughlin, 2008
 
* [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]
 
* [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type]
**  Slater, L. J. (1952),  Proceedings of the London Mathematical Society. Second Series 54: 147–167
+
**  Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
 
* [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]
 
* [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]
 
**  Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
 
**  Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
*   
 
* http://www.ams.org/mathscinet
 
* [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/
 
* [http://arxiv.org/ ]http://arxiv.org/
 
* http://pythagoras0.springnote.com/
 
  
* http://dx.doi.org/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:migrate]]
 
[[분류:migrate]]

2020년 12월 28일 (월) 04:15 기준 최신판

Note

  • not checked



type of identity



Bailey pair 1

  • Use the folloing\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
  • Specialize\(x=q^{3}, y=-q, z\to\infty\).
  • Bailey pair\(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\)



Bailey pair 2

  • Use the following [Slater52-1] (4.2)
  • Specialize\(a=q^{2},d=q^2,e=q\)
  • Bailey pair\(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)



Bailey pair

  • Bailey pairs \(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\) \(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)\(\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)



q-series identity

\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)

  • Bailey's lemma\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}\) (오일러의 오각수정리(pentagonal number theorem) was used to verify this)\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}\)



Bethe type equation (cyclotomic equation)

Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).

Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get

\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)


a=1,d=1,e=1

The equation becomes \(1-x=x\).

\(4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2\)



dilogarithm identity

\(L(\frac{1}{2})=\frac{1}{12}\pi^2\)



related items



articles