"Various concepts of limit in statistical physics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
 
+
  
 
+
  
 
+
  
==concept of limit==
+
==concept of limit==
  
 
===notations===
 
===notations===
27번째 줄: 27번째 줄:
 
===ultraviolet limit===
 
===ultraviolet limit===
 
*  ??
 
*  ??
 
+
  
 
+
  
 
The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.
 
The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.
35번째 줄: 35번째 줄:
 
http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf
 
http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf
  
 
+
  
 
+
  
 
==memo==
 
==memo==

2020년 12월 28일 (월) 05:20 판

introduction

concept of limit

notations

  • N : number of sites
  • a : lattice spacing
  • V : volume

continuum limit

  • used in the lattice model
  • sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant
  • applied to spin chains whose continuum limit yields conformal field theories

scaling limit

  • sounds similar to continuum limit
  • sending the lattice spacing a to zero, while keeping the volume V and the correlation length fixed

thermodynamic limit

infrared limit

  • sending V to infinity, while keeping the lattice spacing a constant

ultraviolet limit

  • ??



The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.

http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf



memo

  • Glimm, J., Jaffe, A.: Particles and scaling for lattice fields and Ising models. Commun. Math. Phys.51, 1 (1976)
  • Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
  • Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
  • Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978