"Hirota bilinear method"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 32개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Advantages of the bilinear formalism:== | ||
+ | |||
+ | * Multisoliton solutions easy to construct. | ||
+ | * The dependent variables are usually tau-functions, with good properties. | ||
+ | * Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa) | ||
+ | * Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | example | ||
+ | |||
+ | http://www.thehcmr.org/issue2_1/soliton.pdf | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==related items== | ||
+ | |||
+ | * [[KdV equation]] | ||
+ | * [[bilinear mathematics]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==계산 리소스== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxVjBqOGE1OU00VkU/edit | ||
+ | |||
+ | |||
+ | ==encyclopedia== | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://mathworld.wolfram.com/HirotaEquation.html | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==books== | ||
+ | |||
+ | * Yoshimasa matsuno Bilinear Transformation Method | ||
+ | * Hietarinta, J. 1997. “Introduction to the Hirota Bilinear Method.” In Integrability of Nonlinear Systems, edited by Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani, 95–103. Lecture Notes in Physics 495. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0113694. http://arxiv.org/abs/solv-int/9708006 | ||
+ | |||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | |||
+ | * Satsuma, J. 2004. “Bilinear Formalism in Soliton Theory.” In Integrability of Nonlinear Systems, edited by Yvette Kosmann-Schwarzbach, K. M. Tamizhmani, and Basil Grammaticos, 251–268. Lecture Notes in Physics 638. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-540-40962-5_8 | ||
+ | * [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008 | ||
+ | * Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method.” Acta Physica Polonica A 112 (December): 1171. | ||
+ | |||
+ | |||
+ | ==articles== | ||
+ | * Chen, Junchao, Yong Chen, Bao-Feng Feng, Ken-ichi Maruno, and Yasuhiro Ohta. “An Integrable Semi-Discretization of the Coupled Yajima--Oikawa System.” arXiv:1509.06996 [math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06996. | ||
+ | * Delisle, Laurent. “A N=2 Extension of the Hirota Bilinear Formalism and the Supersymmetric KdV Equation.” arXiv:1509.03137 [hep-Th, Physics:math-Ph], September 10, 2015. http://arxiv.org/abs/1509.03137. | ||
+ | * Bai, Yong-Qiang, and Yan-Jun LV. “Bilinear B"acklund Transformations and Lax Pair for the Boussinesq Equation.” arXiv:1412.1910 [nlin], December 5, 2014. http://arxiv.org/abs/1412.1910. | ||
+ | * Bazeia, D., L. Losano, and J. L. R. Santos. “Solitonic Traveling Waves in Galileon Theory.” arXiv:1408.3822 [hep-Th, Physics:math-Ph], August 17, 2014. http://arxiv.org/abs/1408.3822. | ||
+ | |||
+ | |||
+ | [[분류:integrable systems]] | ||
+ | [[분류:math and physics]] | ||
+ | [[분류:migrate]] |
2020년 12월 28일 (월) 04:21 기준 최신판
introduction
Advantages of the bilinear formalism:
- Multisoliton solutions easy to construct.
- The dependent variables are usually tau-functions, with good properties.
- Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
- Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
example
http://www.thehcmr.org/issue2_1/soliton.pdf
계산 리소스
encyclopedia
books
- Yoshimasa matsuno Bilinear Transformation Method
- Hietarinta, J. 1997. “Introduction to the Hirota Bilinear Method.” In Integrability of Nonlinear Systems, edited by Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani, 95–103. Lecture Notes in Physics 495. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0113694. http://arxiv.org/abs/solv-int/9708006
expositions
- Satsuma, J. 2004. “Bilinear Formalism in Soliton Theory.” In Integrability of Nonlinear Systems, edited by Yvette Kosmann-Schwarzbach, K. M. Tamizhmani, and Basil Grammaticos, 251–268. Lecture Notes in Physics 638. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-540-40962-5_8
- Hirota’s bilinear method and integrability Jarmo Hietarinta, 2008
- Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method.” Acta Physica Polonica A 112 (December): 1171.
articles
- Chen, Junchao, Yong Chen, Bao-Feng Feng, Ken-ichi Maruno, and Yasuhiro Ohta. “An Integrable Semi-Discretization of the Coupled Yajima--Oikawa System.” arXiv:1509.06996 [math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06996.
- Delisle, Laurent. “A N=2 Extension of the Hirota Bilinear Formalism and the Supersymmetric KdV Equation.” arXiv:1509.03137 [hep-Th, Physics:math-Ph], September 10, 2015. http://arxiv.org/abs/1509.03137.
- Bai, Yong-Qiang, and Yan-Jun LV. “Bilinear B"acklund Transformations and Lax Pair for the Boussinesq Equation.” arXiv:1412.1910 [nlin], December 5, 2014. http://arxiv.org/abs/1412.1910.
- Bazeia, D., L. Losano, and J. L. R. Santos. “Solitonic Traveling Waves in Galileon Theory.” arXiv:1408.3822 [hep-Th, Physics:math-Ph], August 17, 2014. http://arxiv.org/abs/1408.3822.