"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 32개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
  
 +
 +
 +
 +
 +
 +
 +
 +
 +
==Advantages of the bilinear formalism:==
 +
 +
* Multisoliton solutions easy to construct.
 +
* The dependent variables are usually tau-functions, with good properties.
 +
* Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
 +
* Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
 +
 +
 +
 +
 +
 +
example
 +
 +
http://www.thehcmr.org/issue2_1/soliton.pdf
 +
 +
 +
 +
 +
 +
 +
==related items==
 +
 +
* [[KdV equation]]
 +
* [[bilinear mathematics]]
 +
 +
 +
 +
 +
==계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxVjBqOGE1OU00VkU/edit
 +
 +
 +
==encyclopedia==
 +
 +
* http://en.wikipedia.org/wiki/
 +
* http://mathworld.wolfram.com/HirotaEquation.html
 +
 +
 +
 +
 +
==books==
 +
 +
* Yoshimasa matsuno Bilinear Transformation Method
 +
* Hietarinta, J. 1997. “Introduction to the Hirota Bilinear Method.” In Integrability of Nonlinear Systems, edited by Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani, 95–103. Lecture Notes in Physics 495. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0113694. http://arxiv.org/abs/solv-int/9708006
 +
 +
 +
 +
==expositions==
 +
 +
* Satsuma, J. 2004. “Bilinear Formalism in Soliton Theory.” In Integrability of Nonlinear Systems, edited by Yvette Kosmann-Schwarzbach, K. M. Tamizhmani, and Basil Grammaticos, 251–268. Lecture Notes in Physics 638. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-540-40962-5_8
 +
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 +
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method.” Acta Physica Polonica A 112 (December): 1171.
 +
 +
 +
==articles==
 +
* Chen, Junchao, Yong Chen, Bao-Feng Feng, Ken-ichi Maruno, and Yasuhiro Ohta. “An Integrable Semi-Discretization of the Coupled Yajima--Oikawa System.” arXiv:1509.06996 [math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06996.
 +
* Delisle, Laurent. “A N=2 Extension of the Hirota Bilinear Formalism and the Supersymmetric KdV Equation.” arXiv:1509.03137 [hep-Th, Physics:math-Ph], September 10, 2015. http://arxiv.org/abs/1509.03137.
 +
* Bai, Yong-Qiang, and Yan-Jun LV. “Bilinear B"acklund Transformations and Lax Pair for the Boussinesq Equation.” arXiv:1412.1910 [nlin], December 5, 2014. http://arxiv.org/abs/1412.1910.
 +
* Bazeia, D., L. Losano, and J. L. R. Santos. “Solitonic Traveling Waves in Galileon Theory.” arXiv:1408.3822 [hep-Th, Physics:math-Ph], August 17, 2014. http://arxiv.org/abs/1408.3822.
 +
 +
 +
[[분류:integrable systems]]
 +
[[분류:math and physics]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 04:21 기준 최신판

introduction

Advantages of the bilinear formalism:

  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.



example

http://www.thehcmr.org/issue2_1/soliton.pdf




related items



계산 리소스


encyclopedia



books


expositions


articles

  • Chen, Junchao, Yong Chen, Bao-Feng Feng, Ken-ichi Maruno, and Yasuhiro Ohta. “An Integrable Semi-Discretization of the Coupled Yajima--Oikawa System.” arXiv:1509.06996 [math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06996.
  • Delisle, Laurent. “A N=2 Extension of the Hirota Bilinear Formalism and the Supersymmetric KdV Equation.” arXiv:1509.03137 [hep-Th, Physics:math-Ph], September 10, 2015. http://arxiv.org/abs/1509.03137.
  • Bai, Yong-Qiang, and Yan-Jun LV. “Bilinear B"acklund Transformations and Lax Pair for the Boussinesq Equation.” arXiv:1412.1910 [nlin], December 5, 2014. http://arxiv.org/abs/1412.1910.
  • Bazeia, D., L. Losano, and J. L. R. Santos. “Solitonic Traveling Waves in Galileon Theory.” arXiv:1408.3822 [hep-Th, Physics:math-Ph], August 17, 2014. http://arxiv.org/abs/1408.3822.