"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
 
+
  
 
+
  
 
+
  
 
+
  
<h5>Advantages of the bilinear formalism:</h5>
+
==Advantages of the bilinear formalism:==
  
 
* Multisoliton solutions easy to construct.
 
* Multisoliton solutions easy to construct.
16번째 줄: 16번째 줄:
 
* Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
 
* Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
  
 
+
  
 
+
  
 
example
 
example
24번째 줄: 24번째 줄:
 
http://www.thehcmr.org/issue2_1/soliton.pdf
 
http://www.thehcmr.org/issue2_1/soliton.pdf
  
 
+
  
<h5>history</h5>
 
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
  
 
+
==related items==
 
 
 
 
 
 
<h5>related items</h5>
 
  
 
* [[KdV equation]]
 
* [[KdV equation]]
 +
* [[bilinear mathematics]]
  
 
+
  
 
+
 +
==계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxVjBqOGE1OU00VkU/edit
 +
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
==encyclopedia==
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://mathworld.wolfram.com/HirotaEquation.html
 
* http://mathworld.wolfram.com/HirotaEquation.html
* http://www.scholarpedia.org/
+
* [http://eom.springer.de/ http://eom.springer.de]
 
* http://www.proofwiki.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
 
 
 
 
 
 
 
 
  
<h5>books</h5>
+
  
* Jarmo Hietarinta: Introduction to the Hirota Bilinear Method, volume 638 of Lect. Notes Phys. New York: Springer-Verlag 2004.
+
==books==
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
 
  
 
+
* Yoshimasa matsuno Bilinear Transformation Method
 +
* Hietarinta, J. 1997. “Introduction to the Hirota Bilinear Method.” In Integrability of Nonlinear Systems, edited by Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani, 95–103. Lecture Notes in Physics 495. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0113694. http://arxiv.org/abs/solv-int/9708006
  
 
+
  
<h5>expositions</h5>
+
==expositions==
  
* [http://arxiv.org/abs/nlin/0603008 Notes on solutions in Wronskian form to soliton equations: KdV-type], 2006
+
* Satsuma, J. 2004. “Bilinear Formalism in Soliton Theory.” In Integrability of Nonlinear Systems, edited by Yvette Kosmann-Schwarzbach, K. M. Tamizhmani, and Basil Grammaticos, 251–268. Lecture Notes in Physics 638. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-540-40962-5_8
*  
 
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method”. <em>Acta Physica Polonica A</em> 112 (12월 1): 1171. http://adsabs.harvard.edu/abs/2007AcPPA.112.1171G
+
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method.Acta Physica Polonica A 112 (December): 1171.
* [http://arxiv.org/abs/solv-int/9708006 Introduction to the Hirota bilinear method]  J. Hietarinta, 1997
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
 
 
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>
 
**  Werner Nahm, Sinéad Keegan, 2009<br>
 
* Ma, Wen-Xiu, and Yuncheng You. 2005. Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions. Transactions of the American Mathematical Society 357, no. 5 (May 1): 1753-1778. 
 
 
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://arxiv.org/
 
* http://www.pdf-search.org/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5>question and answers(Math Overflow)</h5>
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
 
*  구글 블로그 검색<br>
 
**  http://blogsearch.google.com/blogsearch?q=<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* http://ncatlab.org/nlab/show/HomePage
 
 
 
 
 
 
 
 
 
 
 
<h5>experts on the field</h5>
 
 
 
* http://arxiv.org/
 
  
 
 
  
 
+
==articles==
 +
* Chen, Junchao, Yong Chen, Bao-Feng Feng, Ken-ichi Maruno, and Yasuhiro Ohta. “An Integrable Semi-Discretization of the Coupled Yajima--Oikawa System.” arXiv:1509.06996 [math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06996.
 +
* Delisle, Laurent. “A N=2 Extension of the Hirota Bilinear Formalism and the Supersymmetric KdV Equation.” arXiv:1509.03137 [hep-Th, Physics:math-Ph], September 10, 2015. http://arxiv.org/abs/1509.03137.
 +
* Bai, Yong-Qiang, and Yan-Jun LV. “Bilinear B"acklund Transformations and Lax Pair for the Boussinesq Equation.” arXiv:1412.1910 [nlin], December 5, 2014. http://arxiv.org/abs/1412.1910.
 +
* Bazeia, D., L. Losano, and J. L. R. Santos. “Solitonic Traveling Waves in Galileon Theory.” arXiv:1408.3822 [hep-Th, Physics:math-Ph], August 17, 2014. http://arxiv.org/abs/1408.3822.
  
<h5>links</h5>
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
+
[[분류:integrable systems]]
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
+
[[분류:math and physics]]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
+
[[분류:migrate]]
* http://functions.wolfram.com/
 

2020년 12월 28일 (월) 04:21 기준 최신판

introduction

Advantages of the bilinear formalism:

  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.



example

http://www.thehcmr.org/issue2_1/soliton.pdf




related items



계산 리소스


encyclopedia



books


expositions


articles

  • Chen, Junchao, Yong Chen, Bao-Feng Feng, Ken-ichi Maruno, and Yasuhiro Ohta. “An Integrable Semi-Discretization of the Coupled Yajima--Oikawa System.” arXiv:1509.06996 [math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06996.
  • Delisle, Laurent. “A N=2 Extension of the Hirota Bilinear Formalism and the Supersymmetric KdV Equation.” arXiv:1509.03137 [hep-Th, Physics:math-Ph], September 10, 2015. http://arxiv.org/abs/1509.03137.
  • Bai, Yong-Qiang, and Yan-Jun LV. “Bilinear B"acklund Transformations and Lax Pair for the Boussinesq Equation.” arXiv:1412.1910 [nlin], December 5, 2014. http://arxiv.org/abs/1412.1910.
  • Bazeia, D., L. Losano, and J. L. R. Santos. “Solitonic Traveling Waves in Galileon Theory.” arXiv:1408.3822 [hep-Th, Physics:math-Ph], August 17, 2014. http://arxiv.org/abs/1408.3822.