"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 2개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
 
+
  
 
+
  
 
+
  
 
+
  
 
==Advantages of the bilinear formalism:==
 
==Advantages of the bilinear formalism:==
16번째 줄: 16번째 줄:
 
* Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
 
* Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
  
 
+
  
 
+
  
 
example
 
example
24번째 줄: 24번째 줄:
 
http://www.thehcmr.org/issue2_1/soliton.pdf
 
http://www.thehcmr.org/issue2_1/soliton.pdf
  
 
+
  
  
 
+
  
 
==related items==
 
==related items==
34번째 줄: 34번째 줄:
 
* [[bilinear mathematics]]
 
* [[bilinear mathematics]]
  
 
+
  
 
+
 
==계산 리소스==
 
==계산 리소스==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxVjBqOGE1OU00VkU/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxVjBqOGE1OU00VkU/edit
 
+
  
 
==encyclopedia==
 
==encyclopedia==
45번째 줄: 45번째 줄:
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://mathworld.wolfram.com/HirotaEquation.html
 
* http://mathworld.wolfram.com/HirotaEquation.html
 
+
  
 
+
  
 
==books==
 
==books==
54번째 줄: 54번째 줄:
 
* Hietarinta, J. 1997. “Introduction to the Hirota Bilinear Method.” In Integrability of Nonlinear Systems, edited by Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani, 95–103. Lecture Notes in Physics 495. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0113694. http://arxiv.org/abs/solv-int/9708006
 
* Hietarinta, J. 1997. “Introduction to the Hirota Bilinear Method.” In Integrability of Nonlinear Systems, edited by Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani, 95–103. Lecture Notes in Physics 495. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0113694. http://arxiv.org/abs/solv-int/9708006
  
 
+
  
 
==expositions==
 
==expositions==
64번째 줄: 64번째 줄:
  
 
==articles==
 
==articles==
 +
* Chen, Junchao, Yong Chen, Bao-Feng Feng, Ken-ichi Maruno, and Yasuhiro Ohta. “An Integrable Semi-Discretization of the Coupled Yajima--Oikawa System.” arXiv:1509.06996 [math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06996.
 
* Delisle, Laurent. “A N=2 Extension of the Hirota Bilinear Formalism and the Supersymmetric KdV Equation.” arXiv:1509.03137 [hep-Th, Physics:math-Ph], September 10, 2015. http://arxiv.org/abs/1509.03137.
 
* Delisle, Laurent. “A N=2 Extension of the Hirota Bilinear Formalism and the Supersymmetric KdV Equation.” arXiv:1509.03137 [hep-Th, Physics:math-Ph], September 10, 2015. http://arxiv.org/abs/1509.03137.
 
* Bai, Yong-Qiang, and Yan-Jun LV. “Bilinear B"acklund Transformations and Lax Pair for the Boussinesq Equation.” arXiv:1412.1910 [nlin], December 5, 2014. http://arxiv.org/abs/1412.1910.
 
* Bai, Yong-Qiang, and Yan-Jun LV. “Bilinear B"acklund Transformations and Lax Pair for the Boussinesq Equation.” arXiv:1412.1910 [nlin], December 5, 2014. http://arxiv.org/abs/1412.1910.
71번째 줄: 72번째 줄:
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 +
[[분류:migrate]]

2020년 12월 28일 (월) 04:21 기준 최신판

introduction

Advantages of the bilinear formalism:

  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.



example

http://www.thehcmr.org/issue2_1/soliton.pdf




related items



계산 리소스


encyclopedia



books


expositions


articles

  • Chen, Junchao, Yong Chen, Bao-Feng Feng, Ken-ichi Maruno, and Yasuhiro Ohta. “An Integrable Semi-Discretization of the Coupled Yajima--Oikawa System.” arXiv:1509.06996 [math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06996.
  • Delisle, Laurent. “A N=2 Extension of the Hirota Bilinear Formalism and the Supersymmetric KdV Equation.” arXiv:1509.03137 [hep-Th, Physics:math-Ph], September 10, 2015. http://arxiv.org/abs/1509.03137.
  • Bai, Yong-Qiang, and Yan-Jun LV. “Bilinear B"acklund Transformations and Lax Pair for the Boussinesq Equation.” arXiv:1412.1910 [nlin], December 5, 2014. http://arxiv.org/abs/1412.1910.
  • Bazeia, D., L. Losano, and J. L. R. Santos. “Solitonic Traveling Waves in Galileon Theory.” arXiv:1408.3822 [hep-Th, Physics:math-Ph], August 17, 2014. http://arxiv.org/abs/1408.3822.