"Quantum Fourier transform"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
18번째 줄: | 18번째 줄: | ||
<references /> | <references /> | ||
− | == 메타데이터 == | + | ==메타데이터== |
− | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q1464944 Q1464944] | * ID : [https://www.wikidata.org/wiki/Q1464944 Q1464944] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'quantum'}, {'LOWER': 'fourier'}, {'LEMMA': 'transform'}] | ||
+ | * [{'LEMMA': 'QFT'}] |
2021년 2월 17일 (수) 00:36 기준 최신판
노트
위키데이터
- ID : Q1464944
말뭉치
- In this article, we will take a look at QFT.[1]
- To prove that QFT is implementable, we need to prove the transformation is unitary.[1]
- In Fourier Transform, we develop a faster version called Fast Fourier Transform to compute the transformation iteratively.[1]
- An implementation of the Fourier transform as a quantum circuit sometimes plays a crucial role on quantum computing.[2]
- The Fourier transform that we consider in this paper is somewhat different from the QFT: We propose a quantum implementation of the algorithm of the FFT rather than the QFT.[2]
- where the data sequence \(\{X_k\}\) is the Fourier transform of \(\{x_j\}\) as expressed in (1.2).[2]
- Nevertheless, there are following advantages compared to the classical FFT, and even compared to the QFT.[2]
- The quantum Fourier transform can be performed efficiently on a quantum computer, with a particular decomposition into a product of simpler unitary matrices.[3]
- Since there is an efficient quantum circuit implementing the quantum Fourier transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform.[3]
- The quantum Fourier transform can be approximately implemented for any N; however, the implementation for the case where N is a power of 2 is much simpler.[3]
- "An improved quantum Fourier transform algorithm and applications".[3]
소스
메타데이터
위키데이터
- ID : Q1464944
Spacy 패턴 목록
- [{'LOWER': 'quantum'}, {'LOWER': 'fourier'}, {'LEMMA': 'transform'}]
- [{'LEMMA': 'QFT'}]