"Quantum Fourier transform"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
18번째 줄: 18번째 줄:
 
  <references />
 
  <references />
  
== 메타데이터 ==
+
==메타데이터==
 
 
 
===위키데이터===
 
===위키데이터===
 
* ID :  [https://www.wikidata.org/wiki/Q1464944 Q1464944]
 
* ID :  [https://www.wikidata.org/wiki/Q1464944 Q1464944]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'quantum'}, {'LOWER': 'fourier'}, {'LEMMA': 'transform'}]
 +
* [{'LEMMA': 'QFT'}]

2021년 2월 17일 (수) 00:36 기준 최신판

노트

위키데이터

말뭉치

  1. In this article, we will take a look at QFT.[1]
  2. To prove that QFT is implementable, we need to prove the transformation is unitary.[1]
  3. In Fourier Transform, we develop a faster version called Fast Fourier Transform to compute the transformation iteratively.[1]
  4. An implementation of the Fourier transform as a quantum circuit sometimes plays a crucial role on quantum computing.[2]
  5. The Fourier transform that we consider in this paper is somewhat different from the QFT: We propose a quantum implementation of the algorithm of the FFT rather than the QFT.[2]
  6. where the data sequence \(\{X_k\}\) is the Fourier transform of \(\{x_j\}\) as expressed in (1.2).[2]
  7. Nevertheless, there are following advantages compared to the classical FFT, and even compared to the QFT.[2]
  8. The quantum Fourier transform can be performed efficiently on a quantum computer, with a particular decomposition into a product of simpler unitary matrices.[3]
  9. Since there is an efficient quantum circuit implementing the quantum Fourier transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform.[3]
  10. The quantum Fourier transform can be approximately implemented for any N; however, the implementation for the case where N is a power of 2 is much simpler.[3]
  11. "An improved quantum Fourier transform algorithm and applications".[3]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'quantum'}, {'LOWER': 'fourier'}, {'LEMMA': 'transform'}]
  • [{'LEMMA': 'QFT'}]