"CIFAR-100"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→노트: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
21번째 줄: | 21번째 줄: | ||
===소스=== | ===소스=== | ||
<references /> | <references /> | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q45038012 Q45038012] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LEMMA': 'CIFAR-100'}] | ||
+ | * [{'LEMMA': 'CIFAR100'}] |
2021년 2월 16일 (화) 23:41 기준 최신판
노트
위키데이터
- ID : Q45038012
말뭉치
- The 100 classes in the CIFAR-100 are roughly grouped into 20 superclasses.[1]
- layer { name: "cifar100" type: "Data" top: "data" top: "label" include { phase: TRAIN } transform_param { mean_file: "../mean.binaryproto" } data_param { source: "..[1]
- The 100 classes in the CIFAR-100 are grouped into 20 superclasses.[2]
- There are the following classes in the CIFAR-100 dataset: S. No Superclass Classes 1.[3]
- The 100 classes in the CIFAR-100 are grouped into 20 super-classes.[4]
- CIFAR-100 data set is just like the CIFAR-10, except it has 100 classes containing 600 images each.[5]
- Our EfficientNets also transfer well and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%), and 3 other transfer learning datasets, with an order of magnitude fewer parameters.[6]
- Our method achieves state-of-the-art accuracy on CIFAR-10, CIFAR-100, SVHN, and ImageNet (without additional data).[6]
- We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet).[6]
- Our RoR-3-WRN58-4+SD models achieve new state-of-the-art results on CIFAR-10, CIFAR-100 and SVHN, with test errors 3.77%, 19.73% and 1.59%, respectively.[6]
- The CIFAR-100 dataset contains 50,000 training and 10,000 test images of 20 object classes, along with 100 object subclasses.[7]
- Then, we’ll actually build one – by using the CIFAR-10 and CIFAR-100 datasets.[8]
- They come in two ways: the CIFAR-10 datasets, with ten classes, and the CIFAR-100 dataset, with one hundred classes.[8]
- Now, let’s load some CIFAR-100 data.[8]
- Instead of cifar10 , you’ll import cifar100 .[8]
소스
- ↑ 1.0 1.1 GTDLBench
- ↑ TensorFlow Datasets
- ↑ CIFAR-10 and CIFAR-100 datasets
- ↑ Sripriya07/CIFAR-100: Small Image Classification
- ↑ Classifying CIFAR-100 with ResNet
- ↑ 6.0 6.1 6.2 6.3 CIFAR-100 on Benchmarks.AI
- ↑ Wolfram Data Repository
- ↑ 8.0 8.1 8.2 8.3 How to build a ConvNet for CIFAR-10 and CIFAR-100 classification with Keras? – MachineCurve
메타데이터
위키데이터
- ID : Q45038012
Spacy 패턴 목록
- [{'LEMMA': 'CIFAR-100'}]
- [{'LEMMA': 'CIFAR100'}]