"Johnson–Lindenstrauss lemma"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
14번째 줄: | 14번째 줄: | ||
<references /> | <references /> | ||
− | == 메타데이터 == | + | ==메타데이터== |
− | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q6268577 Q6268577] | * ID : [https://www.wikidata.org/wiki/Q6268577 Q6268577] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'johnson'}, {'OP': '*'}, {'LOWER': 'lindenstrauss'}, {'LEMMA': 'lemma'}] |
2021년 2월 17일 (수) 01:28 기준 최신판
노트
위키데이터
- ID : Q6268577
말뭉치
- The Johnson-Lindenstrauss Lemma (JL lemma) tells us that we need dimension , and that the mapping is a (random) linear mapping.[1]
- A variant of the Johnson–Lindenstrauss lemma for circulant matrices.[2]
- A simple short proof of the Johnson-Lindenstrauss lemma (concerning nearly isometric embeddings of finite point sets in lower-dimensional spaces) is given.[3]
- Earlier versions of the Johnson-Lindenstrauss lemma used a slightly different function .[4]
- It turns out that the Johnson-Lindenstrauss lemma is almost optimal.[4]
- Then, if we map the ‘s to points in while preserving distances up to a factor , then the dimension must be at least , which is nearly what the Johnson-Lindenstrauss lemma would give.[4]
- The Johnson-Lindenstrauss lemma very strongly depends on properties of the Euclidean norm.[4]
소스
메타데이터
위키데이터
- ID : Q6268577
Spacy 패턴 목록
- [{'LOWER': 'johnson'}, {'OP': '*'}, {'LOWER': 'lindenstrauss'}, {'LEMMA': 'lemma'}]