"Discrete Morse theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
12번째 줄: 12번째 줄:
 
  <references />
 
  <references />
  
== 메타데이터 ==
+
==메타데이터==
 
 
 
===위키데이터===
 
===위키데이터===
 
* ID :  [https://www.wikidata.org/wiki/Q5282039 Q5282039]
 
* ID :  [https://www.wikidata.org/wiki/Q5282039 Q5282039]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'discrete'}, {'LOWER': 'morse'}, {'LEMMA': 'theory'}]

2021년 2월 17일 (수) 01:39 기준 최신판

노트

  • Here, we refine the study of the complexity of problems related to discrete Morse theory in terms of parameterized complexity.[1]
  • Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman.[2]
  • Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics.[3]
  • Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory.[3]
  • Discrete Morse Theory is the study of discrete topological spaces from the perspective of certain functions defined on such spaces.[4]
  • In this book, Nicholas Scoville provides an extremely accessible introduction to discrete Morse theory, aimed at an undergraduate audience.[4]
  • Scoville introduces persistent homology in Chapter 5, which connects discrete Morse theory to topological data analysis.[4]
  • Discrete Morse theory was developed by Forman as a combinatorial analog to the classical smooth Morse theory.[5]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'discrete'}, {'LOWER': 'morse'}, {'LEMMA': 'theory'}]