"오차 함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
 
20번째 줄: 20번째 줄:
 
  <references />
 
  <references />
  
== 메타데이터 ==
+
==메타데이터==
 
 
 
===위키데이터===
 
===위키데이터===
 
* ID :  [https://www.wikidata.org/wiki/Q579262 Q579262]
 
* ID :  [https://www.wikidata.org/wiki/Q579262 Q579262]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'error'}, {'LEMMA': 'function'}]
 +
* [{'LOWER': 'gauss'}, {'LOWER': 'error'}, {'LEMMA': 'function'}]

2021년 2월 17일 (수) 01:44 기준 최신판

노트

  • example erf( X ) represents the error function of X .[1]
  • Compute the error function for these numbers.[1]
  • 0.5205 0.9539 0.9545 Compute the error function for the same numbers converted to symbolic objects.[1]
  • If the input argument is a vector or a matrix, erf returns the error function for each element of that vector or matrix.[1]
  • A coefficient table is included to allow evaluation of the error function and its various integrals.[2]
  • Because Magenta is not one of the product colors, the ERROR function is not executed.[3]
  • The table and diagram below show the form of the Gaussian error function.[4]
  • This module provides symbolic error functions.[5]
  • erfinv(Y) returns the value of the inverse error function for each element of Y .[6]
  • erfcinv(Y) returns the value of the inverse of the complementary error function for each element of Y .[6]
  • As p increases, the Least Pth error function approaches the minimax error function.[7]
  • The Least Pth error functions avoid this problem.[7]
  • For more information on the least-squares error function, refer back to Least-Squares Error Function (L2).[7]
  • The error function and its approximations can be used to estimate results that hold with high probability or with low probability.[8]
  • (z)} means that the error function is an odd function.[8]
  • The inverse error function is usually defined with domain (−1,1), and it is restricted to this domain in many computer algebra systems.[8]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'error'}, {'LEMMA': 'function'}]
  • [{'LOWER': 'gauss'}, {'LOWER': 'error'}, {'LEMMA': 'function'}]